
Towards an adaptable
QoS aware middleware for
distributed objects

Aart T. van Halteren

Enschede, The Netherlands, 2003

CTIT PhD.-thesis series number 02-46
Telematica Instituut Fundamental Research Series, No. 008 (TI/FRS/008)

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, The Netherlands

Telematica Instituut Fundamental Research Series (see also http://www.telin.nl/publicaties/frs.htm)
001 G. Henri ter Hofte, Working apart together : Foundations for component groupware
002 Peter J.H. Hinssen, What difference does it make? The use of groupware in small groups
003 Daan D. Velthausz, Cost-effective network-based multimedia information retrieval
004 Lidwien A.M.L. van de Wijngaert, Matching media: information need and new media choice
005 Roger H.J. Demkes, COMET: A comprehensive methodology for supporting telematics investment decisions
006 Olaf Tettero, Intrinsic information security: Embedding security issues in the design process of telematics system
007 Marike Hettinga, Understanding evolutionary use of groupware

Samenstelling promotiecommissie:
Voorzitter, secretaris: prof. dr. W.H.M. Zijm (Universiteit Twente)
Promotor: prof. dr. ir. L.J.M. Nieuwenhuis (Universiteit Twente)
Assistent promotor: dr. L. Ferreira Pires (Universiteit Twente)
Leden: prof. dr. ir. M. Aksit (Universiteit Twente)

prof. dr. ir. C.A. Vissers (Universiteit Twente)
prof. dr. J. Fischer (Humboldt Universität zu Berlin)

 prof. dr. ir. M.R. van Steen (Vrije Universiteit)
 dr. V.C.J. Gay Hdr. (Université Pierre et Marie Curie)

ISSN 1381-3617 (CTIT PhD.-thesis series number 02-46)
ISSN 1388-1795; No. 008
ISBN 90-75176-35-X

Copyright © 2003, A.T. van Halteren, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the copyright owner. No part of this publication
may be adapted in whole or in part without the prior written permission of the author.

Centre for Telematics and Information Technology,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Telephone: +31-(0)53-4898031; Fax: +31-(0)53-4891070

TOWARDS AN ADAPTABLE
QOS AWARE MIDDLEWARE FOR

DISTRIBUTED OBJECTS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 9 Januari 2003 om 16.45 uur.

door
Aart Tijmen van Halteren
geboren op 13 mei 1970

te Bunschoten-Spakenburg

Dit proefschrift is goedgekeurd door:
prof. dr.ir. L.J.M. Nieuwenhuis (promotor)
dr. L. Ferreira Pires (assistent-promotor)

Preface

One of the most spectacular developments of the last decades is the
Internet. The Internet offers instant access to an unmatched amount of
information and as a result has greatly influenced society and the way
business is conducted. Telecommunication providers realise they have to
reposition their business in the new market, where service provisioning is
subject to a higher degree of competition and more dynamic than before
the Internet became big. Understanding, managing and marketing
telecommunication services requires a telecommunication provider to
‘think Internet’. This calls for a good understanding of the basic
technologies that underlie the Internet. Telecommunication providers must
apply the appropriate architectural concepts during the design and
implementation of services.

Just as the current Internet, the future Internet will be a conglomerate
of hardware and software systems often obtained from several vendors,
which are interconnected through a variety of (tele)communication
networks. The services that are designed, developed and deployed for this
complex heterogeneous system are called telematics services. The physical
location of the entities that constitute a telematics service, as well as the
logical location of the functionality of a service, makes a telematics service
an inherently distributed service. This distribution is the result of the
physical allotment of functionality, i.e., distribution by nature, and the
logical allotment of functionality, i.e., distribution by design. Both reasons
for the distributed character of telematics services necessitate a careful
design of the entities or components that constitute a service. In particular
the collaborations of service components are of key importance to the
behaviour of the service as a whole.

The inherent distribution of the functions of a telematics service
requires some notion of the boundary where an entity that provides a
function can interact with its environment. The boundaries of the entities
of a telematics service are often defined as interfaces. It is commonly

VI PREFACE

accepted to apply object technology for the design and development of a
software system. Features of objects, such as abstraction, encapsulation,
polymorphism and extensibility, make object technology a suitable means
for the design and implementation of a service. In the object technology
approach an interface is used to describe how an object can interact with its
environment. If this is applied to telematics services, we can design these
services as a set of collaborating objects and thus benefit from all the
advantages introduced by object technology.

Over the past few years middleware has become an important
technology for telematics services. Middleware is a software infrastructure
that masks distribution and technology aspects, such as the location of
software components, the implementation language and underlying
transport protocols. Middleware encompasses the mechanisms to exchange
and transform data between independently developed and deployed
software components. Middleware offers the software infrastructure that
service components can use to collaborate. Examples of middleware
platforms are Microsoft DCOM, Enterprise Java Beans (EJB), OMG
CORBA and W3C Simple Object Access Protocol (SOAP). In case
telematics services are designed as a set of collaborating objects, then
middleware for distributed objects offers a software infrastructure that
simplifies the design, development and deployment of telematics services.

Distributed object technology and middleware for distributed objects
are useful means to realise service functionality. A logical next step is to also
provide the means to realise the qualitative aspects of a telematics service.
Service users expect a particular quality level in terms of availability,
responsiveness, and safety. Users of a service get accustomed to a certain
level of Quality of Service (QoS). Lack of QoS will dissatisfy existing users
and prevent new users to start using a service. One way for service providers
to offer a high level of QoS is by over-dimensioning the resources for
processing, communication and storage in order to always have sufficient
capacity to serve all users at all times. However, the increasing competition
in the telecommunication market and the regulatory constraints require a
service provider to compete with service offers. One way for a service
provider to compete is to differentiate quality levels between various user
groups, based on some marketing strategy, in order to discriminate from
other service providers or to create a competitive edge.

Differentiation of quality levels can be realised several ways. One way
that is economically not feasible is to build separate hardware and software
infrastructures for each user group to achieve quality differentiation.

The resources for communication, processing and storage in a
telematics system are generally scarce. A service provider will most likely
aim for a single infrastructure that can serve various user groups with
differentiated quality levels. Dimensioning the resources in a telematics

 PREFACE VII

system is a big challenge. In a large-scale distributed system, a-priori
calculation of how many resources are needed to guarantee QoS levels at all
times is very difficult and often imprecise. This is because mathematical
models of telematics systems assume a distribution function (with some
mean and variance) for the arrival of service requests. In practice these
assumptions do not match with reality. This is because the distributed
system is subject to two kinds of changes:
– Run-time: this includes the number of users of the system, the number

of services used, the load generated by a service, unavailability of
resources due to planned or unplanned downtime.

– Evolutionary: this includes the availability of new hardware and software
components, increased processing and communication resources as a
result of the availability of new technology, and the availability of new
mechanisms for resource reservation.

Next-generation middleware should offer facilities that mask the run-time
and evolutionary changes in QoS as much as possible from telematics
services. Middleware forms the execution environment of telematics
services and it should offer an abstract view of the QoS offered by the
underlying communication, processing and storage resources.

In this thesis we investigate how state-of-the-art object middleware can
be improved in order to further simplify the design, development and
deployment of telematics services. In our view, object middleware is the
only cost-effective means for realizing telematics services in a fast,
extensible and customisable way. Contemporary object middleware does
not offer sufficient facilities to control the qualitative aspects of a service.
This thesis builds on the premise that QoS support should be an intrinsic
part of the middleware. A service provider that is capable to provide a QoS
aware object middleware based software infrastructure can easily sell the
use of such an infrastructure to other service providers. As a result the
software infrastructure service provider will play a key role in the value
chain of future telematics service provisioning.

Making QoS aware middleware adaptable to the run-time and
evolutionary changes of a distributed system enables service providers to
offer services with differentiated qualities in a cost effective manner.

This thesis aims to:
1. Construct a reference model of object middleware and clearly separate

the qualitative aspects of the object middleware infrastructure from the
QoS concerns of a telematics service;

2. Advance object middleware technology through the addition of facilities
that can control the qualitative aspects of the objects deployed on the
middleware;

VIII PREFACE

3. Validate our objective to make middleware QoS aware by developing an
infrastructure service that can leverage existing mechanisms for QoS
establishment and control to the middleware level.

These objectives are achieved as follows:
– Analysing the structure of various object middleware platforms and

construct a reference model for object middleware;
– Presenting a model that application designers use to express QoS

aspects of an object middleware based telematics service;
– Defining the relationship between QoS design aspects and the QoS

functions and mechanisms that realise a QoS requirement;
– Designing a prototype infrastructure service, called QoS Provisioning

Service (QPS) for managing QoS aspects of object middleware;
– Comparing the QoS delivered by standard object middleware platform

with the QoS delivered by an object middleware platform enhanced by
QPS

Acknowledgements

About ten years ago, one of my dreams was to buy a mini-van (‘busje’ in
Dutch) and take it for a long drive throughout Europe, with some of my
friends. We called this undertaking the B. Usje enterprise. That enterprise
never came into existence, due to a lack of funds and the urgent need to
finish our studies.

About five years ago I encountered on another journey. The bus on the
cover of this book can be seen as symbol for an alternative B. Usje
enterprise. With the completion of this thesis I look back on a long trip full
of exciting and character building experiences. During this trip I
encountered many people that have contributed to the excitement of the
mission. Now the time has come to express my appreciation.

This trip would not have been possible without my supervisor Bart
Nieuwenhuis. He ensured that there were always sufficient funds to
continue travelling, even when the going got tough. He enabled me to
discover and explore and was only one phone call away in case I needed
direction. I’m very thankful for his support and guidance and that he
persisted until the very end.

The other main influence on the final destination of this trip originates
from Luis Fereirra Pires. He got involved in a later phase of the journey and
has made a significant impact on the quality of this work. His meticulous
comments on my initially unstructured writings have been of great value.

Mehmet Aksit, Chris Vissers, Joachim Fisher, Maarten van Steen and
Valerie Gay have evaluated the results of my journey, as they have been
written down in this thesis. I value the time and effort they spent in
ploughing through this book. In addition, the discussions with my
committee members in preparation of the public defence were uplifting
and motivated me to continue working in the area of open distributed
systems.

The starting point of my PhD research voyage was at KPN Research.
Before I was ready to start my journey KPN Research provided the

X ACKNOWLEDGEMENTS

necessary education. The environment that KPN Research provided has
been most stimulating in many ways. For over 5 ½ years I was able to enjoy
a fruitful collaboration with the colleagues in Groningen. The
encouragements of my roommate George Huitema have been fundamental
in continuing with my research despite opposition from others. Maarten
Wegdam also deserves a special mention for his role as a sparring partner
throughout the entire journey.

Collaboration with the colleagues of KPN Research Enschede, under the
leadership of Wim Jonker, has also been an interesting and learning part of
the trip. Especially Gina Fábián proved fundamental in the production of
papers and promoting our QuAM group to the outside world.

During my trip I visited many countries inside and outside Europe, due
to the research projects I was involved in. The cooperation in national and
international projects has resulted in significant groundwork for this thesis.
More specifically, I’d like to thank the people that I worked with in the
Amidst project and the EURESCOM P715 and P910 projects. Amongst
others, Olaf Kath was one of those persons that I enjoyed working with.

A journey usually involves interesting excursions and side steps that are
needed in order to discover the main road. I was privileged to supervise
several graduate students. The efforts of Maurice Schreiner, Kristian
Helmholt, Petra Oldengarm, Henk & Alwyn, Marcel Harkema, Dirk Jaap
Plas, Jeroen Gommans, Marco van de Logt and Paul Koster have all been
necessary to find the main road. I’d like to thank every one of you for
travelling a part of the journey with me.

Finalising my journey would not have been possible without the support
of the University of Twente. I’m especially indebted to Dimitri Konstantas
for taking me on board of the Application Protocol Systems group and
providing me with the fuel to finish the last mile.

The B. Usje enterprise would never have been successful without the
support of many of my friends and family. This acknowledgment would
become too extensive if I would mention each of you individually. But I
want to mention my wife’s parents because they have supported and
encouraged me as if I was one of their own children.

Finally, I want to express my overwhelming gratitude to my best friend,
partner in life, wife and mother of my children: Irene. You were there next
to me all the way. You have shared with me al the trials and troubles that
we had to overcome to reach this result. With the completion of this thesis,
in fact I feel that we have just reached the beginning.

Aart van Halteren
Overdinkel, November 2002

Contents

CHAPTER 1 Introduction 13
1.1 Developments in the telecommunications industry 13
1.2 Business justification 14
1.3 The role of middleware in open systems 15
1.4 Objectives 16
1.5 Approach 19

CHAPTER 2 Modelling concepts and principles 23
2.1 Distributed processing 23
2.2 Modelling distributed systems 26
2.3 Object modelling 30
2.4 Viewpoints 37
2.5 Middleware for distributed objects 49
2.6 QoS aware middleware 53
2.7 Conclusions 58

CHAPTER 3 Overview of the research area 59
3.1 High-level overview 59
3.2 Object middleware architectures 61
3.3 Network technologies 76
3.4 QoS architectures 83
3.5 Software engineering technologies 86
3.6 Related work 90
3.7 Conclusions and further directions 93

CHAPTER 4 An object middleware reference model 95
4.1 Object middleware as a supporting infrastructure 96
4.2 Influences from early middleware platforms 101
4.3 Support provided by contemporary object middleware 106
4.4 Object communication middleware 113

12 CONTENTS

4.5 General purpose object services 122
4.6 Component Execution Environment 125
4.7 Evaluation and conclusion 129

CHAPTER 5 Models for QoS aware middleware 135
5.1 Design concerns of QoS aware distributed systems 136
5.2 QoS relations 140
5.3 Scope of QoS functions 145
5.4 Requirements on QoS design concepts 149
5.5 QoS design concepts 151
5.6 Meta-model concepts 155
5.7 Evaluation and conclusion 159

CHAPTER 6 Design of a QoS provisioning service 161
6.1 Overview of QPS 162
6.2 Engineering view of QPS 179
6.3 Transformation of QPS to CORBA 183
6.4 Design decisions 187
6.5 QIOP 190
6.6 QIOP experiment 191
6.7 Conclusions 192

CHAPTER 7 Conclusions 195
7.1 General conclusions 195
7.2 Modelling QoS aware middleware 196
7.3 Advancing object middleware 198
7.4 Validation 200
7.5 Directions for further research 201

APPENIX A MODL specification of the QoS meta-model 203

 Samenvatting 207

 References 213

 Abbreviations 221

Chapter 1

1. Introduction

This chapter presents the motivation for this thesis, its objectives and the
approach taken to achieve these objectives.

1.1 Developments in the telecommunications industry

Over the past couple of years developments in the telecommunications
industry have been far from stable. Mergers and acquisitions of telecom
operators have reshaped the business relations between today’s
telecommunication service providers and their customers. Legislators
require telecommunication service providers to open up their network and
allow other players to operate on the market. Due to regulations and the
economic climate, fierce competition between incumbent and new players
in the telecom market has risen. Bankruptcy threats traditionally strong
players. All in all the complexity of the telecommunication market is
growing.

Besides these developments, the Internet has grown explosively and now
governs today's service provisioning developments in many aspects. It is not
surprising that the Internet has a major influence on our economy, on the
telecommunications industry and on our Information and Communication
Technologies (ICT).

Internet technology has a major impact on society and influences the
business of telecommunication providers. Traditional telecommunication
services such as telephone and value added voice services, i.e. the so-called
Intelligent Networks (IN), are gradually outdated by new and advanced
services. Telecommunication service providers have moved from offering
communication services to higher value services such as content packaging,
content delivery, location based information services and other personalised
services [NiHa99, HNSW99].

14 CHAPTER 1 INTRODUCTION

Telecommunication service providers are generally required to provide
new services faster, reduce cost of service development, deployment and
operations and to personalise services to customer needs [BHK+96].
These requirements impact the infrastructure used to deliver services.

Traditional telecommunication infrastructures are the result of decades
of development and technological change. Novel infrastructures are
developed from standard off-the-shelf ICT components and constructed in
the time frame of a couple of years. Telecommunication service providers
are looking for technologies that are aligned with their business needs.
Consequently, manufacturers of telecommunication products are
incorporating Internet technologies and standards into the products offered
to service providers.

1.2 Business justification

Telecommunication manufacturers are forced to move to standard ICT
solutions and practices to construct their products, as a result of the
developments discussed in the previous section.

In this thesis we focus on one of these standard ICT solutions called
middleware for distributed objects. A potential spin-off from this thesis is that
service providers have access to standard software components that enable
differentiation of service quality between various user-groups.

Middleware for distributed objects is a technology that creates internal and
external benefits to service providers. The internal benefits are gained
through increased efficiency, lower operational costs and the ability to
rapidly change business practices. The external benefits originate from the
ability to enter new markets and to find new ways to reach customers
[NiHa99]. Middleware is a software layer that integrates software
components into services and thus plays a key role for an agile service
provider. However, if a service provider is not capable to manage the
qualitative aspects of its middleware based services, the middleware
becomes a showstopper.

In a mature and open market, as in many other industries, the primary
economic forces will be determined by customers selecting from a wide
range of services and products that differ with respect to price and quality
[NiWi00]. In the years to come, the quality of service will not primarily be
determined by the available bandwidth of our networks anymore. Quality of
Service (QoS) will be more and more determined by the availability of all
the resources needed for service provisioning, e.g., the communication
links, the routers, the computing devices, and data stores.

 THE ROLE OF MIDDLEWARE IN OPEN SYSTEMS 15

Middleware for distributed objects acts as a point of convergence for all
these resources. Our goal with the results presented in this thesis, is to
increase the use of middleware through the addition of mechanisms that
establish and maintain some QoS level required by the users of a service.

1.3 The role of middleware in open systems

Currently, the Internet is a conglomerate of hard- and software systems
obtained from several vendors, which are interconnected through a variety
of (tele)communication networks. In the future this will not change. The
Internet will remain an open system that has many vendors, consists of
parts that are implemented with various technologies, can scale to a size
beyond the telephone system, and evolves gracefully. The Internet enables
disparately developed applications to collaborate and share data.

Heterogeneity in open systems is inevitable for historic and
technological reasons. For example, Moore’s law dictated that the number
of transistors per integrated circuit would double every eighteen months
[Mo65]. Even after several decades this law still holds. As a result, faster
and more powerful computer systems become available. A similar growth in
available network bandwidth can be observed due to more powerful routers
and switches. The speed of technological developments make it necessary
for new and existing hardware systems to interwork, because existing
systems have not been written down when new systems arrive on the
market. Therefore existing systems are not replaced even when new
technological superior systems become available.

Not only the technological developments of hardware systems are
moving fast, but also new operating systems and new programming
languages emerge, accompanied with new development tools. Software
developers usually have specific knowledge of a limited set of operating
systems and development environments. This conflicts with the need to
develop software for heterogeneous systems. As a result, companies are
forced to hire highly trained specialists in order to develop applications for
their heterogeneous systems. However, the understanding of how to build
open applications cannot be in the hands of a few specialists, because these
specialists are scarce which makes open application development very
expensive.

Ideally, telematics services developed for open systems should be
enabled to interwork with new and existing telematics services.
Interworking is the ability of applications components that constitute a
telematics service to collaborate and share data. Interworking enables open
distributed systems to simply grow to large-scale distributed systems,
because relatively small open distributed systems can be easily

16 CHAPTER 1 INTRODUCTION

interconnected with other distributed systems to form bigger ones. This
requires application components to be developed using rules for
interoperability, which are captured in standards. For example, the Word
Wide Web (WWW) has grown to a global size information retrieval system,
due to broadly accepted Internet standards [IETF97, W3C98].

The speed of progress in hardware systems, network technologies and
operating systems, complemented with the need to develop software that
can grow along with the size of the open system, leads to the following
observations [He92]:
– New and existing hard- and software systems must interwork;
– Open application development should not be in the hands of a few

specialists;
– Applications should comply with rules for interoperability.

A cost-effective solution to the development of telematics services in open
systems is necessary. Middleware has emerged as such a solution.
Middleware serves to shield application components from the heterogeneity
of the underlying computer platforms and networks and to provide effective
support to a diversity of telematics services.

The role of middleware in open distributed systems is to offer
transparencies to the designer and developer of telematics services. This
means that the mechanisms used to overcome problems and details of
distribution are hidden to the application components. This is
cost-effective, since designers of a telematics service do not have to re-
invent and re-implement the mechanisms to overcome problems of
distribution over and over again.

1.4 Objectives

The objectives of this thesis are derived from the developments and
observations described in the previous sections and are reflected in its title:
“Towards an adaptable QoS aware middleware for distributed objects”.

The term middleware for distributed objects refers to a supporting infrastructure
for telematics services. The focus of this thesis is on the simplification of the
design, development and deployment of telematics services in distributed
heterogeneous systems. We assume that object technology and middleware
technology are important means for a designer to achieve such a
simplification.

Designing telematics services is a complex task performed by many
designers, each allocated with a specific part of the design process. In this
thesis we distinguish between designers of telematics applications and

 OBJECTIVES 17

designers of the supporting infrastructure. The application designer focuses
on the behaviour of the service towards the end-user. The infrastructure
designer focuses on the allocation of resources to the application
components and the communication between these components. In fact
these aspects can be designed once and re-used by many applications.

If we assume that designers are designated a specific role in the design
process, we first have to investigate which roles designers can have. If we
have defined these roles, then for each of the designer roles specific aspects
of the telematics service needs to be modelled. In fact, we assume that
various models of the same system are needed, each model highlighting a
different aspect of the system. In this thesis we study the relationship
between designer roles and the models needed for this role.

Obviously, if we have various models highlighting different aspects, we
need to be sure that these models are consistent and no contradictions
exist. Moreover, we address the question how the various models are
interrelated.

Middleware as it exists today is the result of many years of independent
developments by different organisations and companies. Each development
targeted for a number of concerns while developing and applying
middleware technologies. Our objective is to search for the main concerns
that guided the various developments and to identify the commonalities and
differences. This is our basis for the construction of a reference model for
middleware. We use this reference model as starting point for the
development of QoS mechanisms, in order to guarantee that our solutions
are not technology or platform dependent but sufficiently generic to be
applied in many different environments.

To assist the designers of a telematics service in their task, we search for
answers to questions such as:
– What roles can designers of a telematics service have?
– What aspects of a distributed system should designers model, depending

on their role?
– How are the various aspects of a design related?
– What are the common concerns of early and contemporary middleware

platforms?
– Can we construct a reference model that captures the common

concerns of middleware for distributed objects?

The term QoS aware refers to the qualitative aspects of the middleware.
Awareness of the qualitative aspects of a telematics service starts with the
design of a telematics service. A designer states the qualitative properties
required from a telematics service such as performance, availability and
safety. The main challenge of this thesis is to make QoS support an intrinsic
part of middleware, in order to facilitate the realisation of qualitative

18 CHAPTER 1 INTRODUCTION

properties of a design. Middleware that simplifies the realisation of QoS
concerns of a telematics service is considered to be QoS aware.

To assist with the design of qualitative aspects of a telematics service, we
search for answers to questions such as:
– How can designers model the QoS aspects of a telematics service?
– What modelling concepts are needed to express the QoS capabilities of

a QoS aware middleware?
– What modelling concepts are needed to express the QoS requirements

of the parts of a telematics service?
– Can we hide the means to achieve QoS awareness while still remaining

flexible with respect to various QoS requirements?

The term adaptable refers to a property that QoS aware middleware for
distributed objects must have, both on short and long terms.

Short term adaptability, i.e., concerning run-time changes, is needed
because in a heterogeneous system the qualitative properties are subject to
change due to a changing number of users of the system, the number of
services used and unavailability due to planned or unplanned downtime.

Long term adaptability, i.e., concerning evolutionary changes, is needed
because new computing and communication resources with additional
functionality become available over time and object middleware should
incorporate this functionality.

Our objective is to contribute to the design of adaptable QoS aware
middleware that hides the run-time and evolutionary changes as much as
possible from a telematics service.

To introduce adaptability into QoS aware middleware, we search for
answers to questions such as:
– What are the generic means to establish agreements on the QoS that a

telematics service requires?
– Can we construct a generic framework, adaptable to evolutionary

changes, that simplifies the establishment of such agreements?
– What are generic means to maintain to QoS of a telematics service?
– Can we construct a generic framework, adaptable to run-time changes,

that simplifies control of QoS?

The objectives of this thesis can be summarised as follows:
1. Construct a reference model of object middleware and clearly separate

the qualitative aspects of the object middleware infrastructure from the
QoS concerns of a telematics service;

2. Advance object middleware technology through the addition of facilities
that can control the qualitative aspects of the objects deployed on the
middleware;

 APPROACH 19

3. Validate our objective to make middleware QoS aware by developing an
infrastructure service that can leverage existing mechanisms for QoS
establishment and control to the middleware level.

1.5 Approach

A QoS aware middleware is a software infrastructure that supports
interactions between application components and allows these interactions
to be subject to quality requirements of the application components. In this
thesis a generic architecture for the specification and enforcement of QoS
aware interactions is proposed. This architecture is validated by means of a
design and implementation of a component that acts as a broker between
the QoS capabilities of the middleware and the quality requirements of
application components. This component is called the QoS Provisioning
Service (QPS).

To increase acceptance of the architecture, the concepts and designs
proposed in this thesis, we search for solutions that are in line with the
already existing standards, architectures, technologies and engineering
practices for open distributed systems. We therefore present an overview of
the research area, which serves as a starting point for introducing QoS
awareness into middleware for distributed objects.

To further justify the proposed extensions to existing object middleware
and to ensure that these extensions are not tied to one specific object
middleware, a reference model for object middleware is presented. This
reference model captures the technological advancements of middleware
systems over the past decades.

From this reference model, we develop a QoS aware object middleware.
We consider the QoS aware middleware from an external and an internal
view. In the external view the application components use the QoS
capabilities of the middleware to express QoS requirements. The external
view, depicted in Figure 1-1, hides the functions and mechanisms used to
establish and maintain QoS requirements from application components.

20 CHAPTER 1 INTRODUCTION

QoS-awar
DPE

Application
Component

QoS requirements QoS capabilities

QoS-aware
object

middleware

Application
Component

QoS requirements QoS capabilities

The object middleware is responsible to inform application components of
its QoS capabilities and to see if it can meet the QoS requirements. The
internal view exposes how QoS requirements are established and
maintained. Figure 1-2 shows the internal view of a QoS aware middleware.
The QoS Provisioning Service (QPS) uses a set of mechanisms to realise
QoS requirements of application components.

The architecture of a QoS aware object middleware and the design of the
QoS Provisioning Service are validated with a prototype implementation.
With this prototype the solutions proposed in this thesis are implemented
and evaluated, by comparing the effects of the QPS with a non-QoS aware
object middleware.

This thesis is structured as follows:
– Chapter 1 Introduction provides a global definition of the problem area.

It defines the area of research, scope and objectives and presents the
relevance of this work from the perspective of a telematics service
designer and the perspective of a service provider;

– Chapter 2 Modelling concepts and principles introduces the modelling
concepts and principles used throughout this thesis.

– Chapter 3 Overview of the research area presents the necessary background
information that is relevant for this work and presents the technology

Figure 1-1 External
view of a QoS
aware object
middleware

Figure 1-2 Internal
view of a QoS
aware object
middleware

QoS Provisioning
Service

mechanism 1 mechanism n

QoS requirements QoS capabilities

QoS Provisioning
Service

Mechanism 1 Mechanism n

 APPROACH 21

currently available in this area. This background forms the basis for a
more detailed motivation of the thesis objectives;

– Chapter 4 An object middleware reference model describes the structure of
current object middleware systems. It presents the key internal entities
of an object middleware system, their functionality and their
interworking. The view presented in this chapter is an abstract and
generic representation of object middleware platforms as CORBA,
Enterprise Java Beans and SOAP.

– Chapter 5 Models for QoS aware middleware provides a meta-model for
modeling the QoS requirements and QoS capabilities of a software
infrastructure for telematics services;

– Chapter 6 Design of a QoS provisioning service introduces the QoS
Provisioning Service (QPS). This service is responsible for managing
QoS aspects of an object middleware and is designed to cope with the
changing quality levels of the middleware due to run-time and
evolutionary changes;

– Chapter 7 Conclusions presents a summary of the conclusions drawn
throughout this thesis, evaluates how our objectives have been achieved
and identifies directions for further research.

Chapter 2

2. Modelling concepts and principles

This chapter introduces the modelling concepts and principles that are
relevant for the rest of this thesis.

One of the objectives of this thesis is to develop support for the
enforcement of qualitative aspects in applications. To be able to describe
this support an appropriate set of modelling concepts is needed. The
concepts and principles introduced in this chapter are tailored to the
modelling of distributed applications, which are applications deployed on a
set of geographically distributed computing systems.

The structure of this chapter is as follows: section 2.1 presents the
typical characteristics of a distributed system. Section 2.2 outlines the
fundamental concepts that are employed for the development of
specifications of a distributed system. Section 2.3 discusses the use of
objects as elementary units of specification. Section 2.4 introduces the
notion of viewpoints that enables the separation of concerns for the
specification of a distributed system. Section 2.5 introduces the notion of
middleware for distributed objects and defines some additional terms
related to middleware. Section 2.6 discusses an intuitive of notion of
Quality of Service (QoS) in the context of middleware. Finally, section 2.7
presents the conclusions regarding the concepts and principles outlined in
this chapter.

2.1 Distributed processing

For the past decades, the cost of processing power as well as the cost of
network technology and (tele)communication services has been decreasing.
As a result, companies and individuals can afford more processing power
and are connecting an increasing amount of computing systems through
communication networks. Computing systems are connected through
networks, because the users of these systems have the need to share

24 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

resources, such as processing power or storage capacity. The need to share
resources has become more apparent with the increasing amount of
information that is made available online.

Distributed computing or distributed processing is concerned with
sharing processing power and other resources through communication
networks. Resources are shared to accomplish a task that cannot be
performed on a single computing system. For example, consider a software
development team that uses a set of personal computers that are connected
through a network in order to collaboratively develop software. As a shared
resource the team requires a storage space to exchange the pieces of
software produced by the team members. Distributed processing is
concerned with a set of interconnected computing systems that
collaboratively accomplish a task by sharing resources.

Distributed processing implies that the systems involved are
geographically spread. The computing systems involved in a distributed
processing task are part of a distributed system. Distributed systems are
employed to support the sharing of resources and the distribution of work
over multiple computer systems.

2.1.1 Distributed systems

Several definitions of ‘distributed systems’ have been provided [BlSt97]
[Mu93]. Leslie Lamport has been attributed the following famous
definition: “A distributed system is one that stops you from getting any
work done when a machine you’ve never heard of crashes”.

For the purpose of this thesis, the following definition of a distributed
system is employed:

A distributed system is a system that consists of multiple, autonomous processing
elements that are geographically distributed and, therefore, cannot share primary
memory, but cooperate by sending messages to each other over a communication
network.

The processing elements of a distributed system are generally not owned by
one individual or a single organisation. The resources assigned to a
distributed processing task are only shared at the discretion of an owner of
a resource. A prominent term in definition 1 is ‘autonomous processing
elements’. Distributed systems, according to this definition, distinguish
themselves from more tightly coupled systems such as parallel systems or
multi-processor systems, which share primary memory.

Definition 1
Distributed System

 DISTRIBUTED PROCESSING 25

2.1.2 General characteristics

The physical distribution of the processing elements that comprise the
distributed system and the way these elements communicate entails in a
number of characteristics, sometimes referred to as ‘symptoms of a
distributed system’ [Mu93]. The following characteristics have been
identified [ODP1]:
– Remoteness: the parts of a distributed system may be spread

geographically; interactions between the parts may be either local (i.e.,
when parts are located in the same place) or remote (i.e., when parts
are located in geographically disperse places);

– Concurrency: any part of a distributed system can execute in parallel with
any other part;

– Lack of global state: the global state of a distributed system cannot be
precisely determined;

– Partial failures: any part of a distributed system may fail independently of
any other part;

– Asynchrony: there is no single global clock that drives communication and
processing activities. Related changes in a distributed system cannot be
assumed to take place at a single instance in time.

2.1.3 Characteristics of an open distributed system

The resources that constitute a large distributed system, such as, for
example, the Internet, are not manufactured or owned by a single
organization. Therefore, distributed systems often cross multiple
technological and organizational boundaries. Collaborative processing
between the parts of such distributed systems requires certain agreements
between the manufacturers of the parts. This leads to the notion of open
distributed systems.

Different vendors can build the parts that constitute an open distributed
system. This gives the owners of a distributed system the option to obtain
parts from various vendors. Each vendor can choose its own way to
implement a part of a distributed system, yet the parts can interoperate.
Openness of a distributed system implies that there must be consensus on
the rules that guarantee the interoperability of the parts. This consensus can
be established either through a formal standardisation process (dejure
standardisation) or through a consortium of vendors (de-facto
standardisation).

According to ODP-RM, open distributed systems have a number of
additional characteristics [ODP1]:
– Heterogeneity: in an open distributed system, there is no guarantee that

parts are built using the same technology and the set of various

26 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

technologies will certainly change over time. Heterogeneity applies to
many aspects of an open distributed system: hardware, operating
systems, communication networks and protocols, programming
languages, etc.;

– Autonomy: an open distributed system can be spread over a number of
autonomous management or control authorities, without any single
point of control. The degree of autonomy specifies the extent to which
processing resources and associated devices (printers, storage devices,
graphical displays, audio devices, etc.) are under the control of separate
organizational entities;

– Evolution: during its working life, an open distributed system generally
has to face many changes, which are motivated by technical progress,
enabling better performance at a lower price, by strategic decisions
about new goals, and by new types of applications;

– Mobility: the sources of information, processing nodes, and users may
move around in space. Programs and data may also be moved between
processing elements, e.g., in order to cope with physical mobility or to
optimize performance.

A designer that needs to design a distributed system has to take into
account many, if not all, of these characteristics. Consequently, the design
of a distributed system is a complex task.

2.2 Modelling distributed systems

Models are used to manage the complexity of a distributed system, making
it easier to understand the characteristics of a distributed system. Modelling
is the activity of capturing the characteristics of a system that are of interest
for some specific goal, while abstracting from other characteristics. A
modelling activity results in one or more models of the system. We use the
following definition for a model:

A model is a simplified representation of a system that accounts for some of its
known, inferred or desired characteristics, while purposely abstracting from other
characteristics with the intent to further study or define system characteristics.

A model is created in order to obtain an abstraction of a system.
Abstraction is a technique that allows one to concentrate on aspects of a
system that are considered essential for a certain purpose. Abstraction is
related to the purpose for which an abstraction of a system is developed.

During the process of modelling a system one should be aware of the
aspects that are essential for the purpose of studying or defining a system. A

Definition 2 Model

 MODELLING DISTRIBUTED SYSTEMS 27

model of a system should only consider characteristics of the system that
are relevant for the purpose of developing the model.

For example, consider two models of a central processing unit (CPU).
The first model is intended to study the performance of a CPU, e.g., how
many floating-point operations per second the CPU can perform. The
second model is intended to study the heat emission of the CPU for a given
workload. Both models concern the same CPU, but are created with
different purposes and therefore highlight different aspects of the system.
Both models are abstractions of the same system.

2.2.1 Model, design and specification

The set of concepts that is used to create models is called a meta-model. A
model developed from this set of concepts is an instance of the meta-
model. Models are developed to either study an existing system (analysis) or
to produce a new system (synthesis). When a model is developed for the
synthesis of a system, such a model is called a design. A design is a
prescriptive model of a system. A designer may create several designs for
the synthesis of a system.

Designs are conceptual models that are conceived and manipulated in a
designer’s mind. Due to the limited capabilities of the human mind for
capturing complex designs, we are forced to represent designs, in order to
allow documentation, communication and reasoning about the
characteristics being represented. In addition, when designs are represented
in a form that can be interpreted by tools on a computer, the analysis and
manipulation of a design can be (partially) automated.

The representation of a design in a(n) (electronic) document is called a
specification. A specification consists of symbols that represent the
modelling concepts from the design. The complete set of specification
symbols and the rules that determine the arrangements of these symbols
that are allowed is called a specification language.

The above observations lead to the following relations between design
and specification [Qu98, Pi94] as depicted in Figure 2-1.

28 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

Meta
Design

(= meta model)

Specification

Specification

language

Design
(= model)

Used to
develop

Instance
of

Used to
develop

Instance
of

represented by

interpreted as

represented by

interpreted as

The relation between a design and a meta-design can be applied recursively,
such that a meta-design is developed from a meta-meta-design or that a
design is used as a meta-design. To understand how a design must be used,
the meta-level of a design must be known. In a similar way a specification
language is designated a meta-level. Consequently, a specification that
represents a design at a specific meta-level can be used as a specification
language to develop a lower level specification.

Careful use of meta-levels in the design of an open distributed system
enables a designer to create a representation of a design that can be
interpreted and manipulated by the system itself. Run-time interpretation
and manipulation of a design by a system is called reflection.

The distinction between a design and a specification enables an abstract
set of design concepts to be represented using various specification
languages. The choice for a specification language depends on how and by
whom a specification is used. For example, a human-readable specification
may use graphical symbols to represent a design, whereas a
computer-readable specification consists merely of a sequence of bits
somewhere in the memory of a computing system. Both specifications
represent the same design.

2.2.2 Refinement, decomposition and abstraction

A designer may use several designs to model a system. Designers may
choose to develop several designs because they need to further manage the
complexity of a system. Designs can be developed at different levels of
granularity. A coarse-grained design presents less detail than a fine-grained
design.

A designer can develop a coarse-grained design and then create a more
fine-grained design that conforms to the coarse-grained design. The fine-
grained design shows a more detailed representation of the system. The

Figure 2-1
Relations between
design and
specification

 MODELLING DISTRIBUTED SYSTEMS 29

process of adding more detail to a design is called refinement. Refinement
is a technique that allows a designer to address one concern at a time.
Refinement is the opposite of abstraction.

Decomposition is a special case of refinement. Decomposition is
achieved by decomposing some or all of the parts of a coarse-grained design
into a design that is more detailed. In this refined design some original
parts may be replaced by a number of subparts. Decomposition of parts
into subparts can be repeated as often as needed and usually stops when the
parts of a design are trivial to produce or can be bought from a vendor.

A designer refines a design by adding more details. One way to add
more detail is to specify the internal structure of some or all of the parts of
a design. Such a refinement of a design leads to a new level of
decomposition of a system. Each level of decomposition forms an
abstraction of the system. The various levels of decomposition that result
from the refinement of a coarse-grained design into a more fine-grained
design are closely related. On one hand, a design at level N results in a
design at level N+1, through refinement. On the other hand, a level N
design forms an abstraction of a level N+1 design. Related decomposition
levels, are also called related abstraction levels.

To further illustrate the notion of abstraction levels, consider the design
of an Automatic Teller Machine (ATM). In an initial design (design N) a
designer considers the ATM machine as a black box. A customer can collect
money from the ATM machine after a correct personal identification
number (pin) and the amount of money have been entered. In a refined
design (design N+1), the ATM machine is decomposed into a user
interface part, a pin verification part and a part that controls the money
collector. Both designs and their relationships are shown in Figure 2-2.

Design N

Insert pin.
Request amount.

Verification
software

User
interface

Collector
controller

Design N+1

Collect
money

Refinement Abstraction

ATM

Figure 2-2 Two
related designs of
an ATM machine

30 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

Design N+1 is a refinement of design N. Both designs represent the ATM
system at different abstraction levels, because design N+1 is a more
detailed representation of the system as design N.

The stepwise refinement of a design entails a top-down approach to the
design of a distributed system. However, in practice the trajectory followed
by a designer of a distributed system is not simply a straight path of
refinement steps until the parts can be realised in hardware or software. A
system can be decomposed in many alternative ways. Therefore, a designer
may create several alternative refinements, and through a process of trial
and error decide which refinement is the best to continue from. The design
process may be guided by bottom-up knowledge about already existing
parts that are represented in a design.

2.3 Object modelling

A designer is free to choose which primitive modelling concepts are used to
model a system. When a designer uses object as the primitive modelling
concept, the resulting models are called object models. An object model is a
model of a system whereby the parts of the system are represented as
objects. Object models are used as abstractions of a distributed system.

Object models are developed to represent the concrete software parts of
a distributed system or to capture the conceptual parts of a distributed
system. In the latter case, the objects of the model may not be represented
as corresponding software objects. In case an object model is developed to
represent the software parts, the objects of that model can be found as
software artefacts in the distributed system.

The object models developed in this thesis concentrate on the
representation of concrete software parts of a distributed system.

2.3.1 Characterisation of an object

An object is an abstraction of a real world entity. An object is characterised
by a set of actions that this object can perform. An action is an activity in
which an object is involved. Actions can be internal, which means they
occur inside the object. Actions can also be external, which means they
occur outside the object. An object consists of one or more interfaces and
an object core.

The interface of an object defines the potential external actions that can
take place in which the object can be involved. The set of potential external
actions is described as a set of named operations. An operation defines a
potential action of an object and optionally has a set of typed parameters.
The interface signature defines an interface. The interface signature is a

 OBJECT MODELLING 31

collection of the signatures of the operations. The name of an operation,
the set of typed parameters and the return type define the operation
signature. An operation signature may also contain an exception that is
raised when an external action results in an abnormal condition. Operation
signatures are equivalent to a function definition, i.e., an operation takes
zero or more parameters as input, does some processing and returns an
optional and possibly empty result. The object core determines the
processing that results from calling an operation.

The object core represents the internal functioning of an object. An object
core supports methods and attributes. Attributes can be inspected and
modified by respectively get and set operations defined in the objects’
interface. Methods implement the operations defined in an interface.
Methods determine the behaviour of an object, i.e., the set of internal
actions performed by an object as the result of an external action. The
object core also manages the internal state of an object. Depending on the
requirements on an object, its state can be maintained in volatile storage or
written to persistent storage. In the latter case it is possible for an object to
outlive the period in which it is active. In case the internal state of an object
is empty it is called a stateless object.

 Object core Interface

Operation1
Operation2
Operation3
Get_Attribute1
Set_Attribute1

Method1
Method2
Method3
Attribute1

The environment of an object can only change the state of the object
through its interface. The object core and interface are the primitive
building blocks of an object, but both should coexist for proper operation.
The close linkage between an interface and an object core is shown in
Figure 2-3.

The typical characteristics of an object are the following [Sz97]:
– An object is a unit of instantiation; it has a unique identity;
– An object has state; this state can be persistent;
– An object encapsulates its state and behaviour.

Figure 2-3
Graphical
representation of
an object

32 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

From these characteristics of an object a number of observations can be
made. Since an object is a unit of instantiation, it is a discrete item that
cannot be instantiated partially. The unique identity of an object allows it to
be identified despite changes in its state that can occur during its lifetime.
The set of all potential actions that an object may perform is defined as the
behaviour of the object. The state of an object is characterised by the
condition of its internal data and represented by the content of its internal
memory at a given instant. State and behaviour are closely related concepts.
The current state of an object is determined by its past behaviour.
Conversely, potential behaviour of an object is determined by its present
state.

The state of an object can be changed through an internal action or
through an external action. External actions happen at the interface of an
object. The interface further emphasises that an object encapsulates its state
and behaviour. These characteristics of an object lead to the following
definition:

An object is a discrete design concept, that encapsulates its state and behaviour
and is used to model a software entity. An object is subject to internal actions,
which occur at the object core, and external actions, which occur at one of its
interfaces.

Since an object is a unit of instantiation, there must be some building plan
that describes how it is instantiated, i.e., what are its initial state, state space
and behaviour. Such a blueprint, or construction plan for an object is called
a template. Because objects can be instantiated from a template, an object is
also referred to as an instantiation of a particular template. Many unique
objects can be constructed from a template and all objects constructed
from a template have similar characteristics. However, two objects
constructed from the same template have different identities. These objects
may differ in their state and consequently they may behave differently as the
result of an external action.

Objects that have a common structure for one or more of their
attributes, operations or methods can be grouped together. Objects can be
grouped into an object set based on a predicate. Such a predicate
determines the type of the object. A set of objects for which the same
predicate holds is called a class. Consequently, objects that have the same
type belong to a class.

In object oriented programming languages the type of an object is
determined by its template, i.e. objects instantiated from the same template
have the same type. The predicate that determines the type of an object in
this case, is that the object is an instance from a specific template. As a
result the template also defines a class. Therefore, ‘class’ is a notion that

Definition 3 Object

 OBJECT MODELLING 33

serves a dual purpose. A class defines the blueprint for the construction of
objects with the same type. Conversely, objects that have the same type
belong to the same class.

2.3.2 Polymorphism and inheritance

One of the most powerful concepts of object modelling is the notion of
polymorphism. Polymorphism is a notion with a dual meaning.
Polymorphism is the ability of an object to have multiple forms, depending
on its context. Alternatively, polymorphism is the ability of objects
instantiated from different templates to comply with the same type in a
certain context.

To explain how object models can benefit from polymorphism, first we
explain the notion of sub-typing and inheritance. Corresponding to the
concept of class and type of an object, the concept of subtype and subclass can
be defined. A subtype is a predicate on an object with more stringent
constraints than its super type. Similarly, a subclass is defined as the set of
objects for which the subtype holds true. Consequently, a class C2 is a
subclass of C1 if and only if C2 is a subset of C1. A subtype predicate
dictates that the object is constructed using a template that includes the
template used to constructed objects in its superclass. For example,
consider O1 that is instantiated from T1 and O2 that is instantiated from T2,
then the type of O2 is a subtype of the type of O1 if and only if T2 includes
T1.

The concept of subtype and subclass, leads to a clear separation between
an instance of a template and an instantiation of a template. An instantiation
of a template is always an instance of a template. However, an instance of a
template is not necessarily an instantiation of that template. This also
demonstrates the close linkage between a class and a template. Objects
either directly or indirectly instantiated from the same template belong to
the same class. Figure 2-4 shows the relation between instantiation,
instance, class and object [Ru93].

34 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

T1

T2

extends

Templates Objects

Class C1

Class C2
instantiation

instantiation

instance

Figure 2-4 illustrates that class C2 is a subset of the class C1. As a result,
objects of type T2 are also objects of type T1. This is the consequence of the
subtype relation between objects in C2 and C1, which follows from the
extension of T1 in T2.

A template can be extended in two ways: through structural sub-typing
and through inheritance. Structural sub-typing concerns the definition of a
sub-type T2 of T1 by repeating template T1. Sub-typing through
inheritance concerns the definition of sub-type T2 by referring to template
T1. This form of sub-typing is preferred in this thesis.

The concept of inheritance enables a designer to create new types by
extending already existing types. As a result a sub-class of an already
existing class of objects can be created. Objects of a subclass have an
extended interface and are also instances of their superclass. In that sense
objects for which a subtype T2 of T1 holds are polymorph, i.e., these objects
can be addressed as instances of their super class. Polymorphism is the
ability of an object to be an element of one class and at the same time of
another class.

Polymorphism concerns the outside of an object, which is defined by
the interface of an object. Polymorph objects are defined by creating a
subtype of an interface. This is called interface inheritance. The specification
of an object core may also be inherited from the specification of an object
for which a super type holds. This is called implementation inheritance.
Polymorph objects must be defined using interface inheritance but are not
required to use implementation inheritance. When implementation
inheritance is not used the object core overrides the behaviour of its super
type.

Figure 2-4
Template, class
and object

 OBJECT MODELLING 35

2.3.3 Object interactions

When a distributed system is modelled as a set of objects, the collaborations
between these objects are specified as interactions. An interaction is a
sequence of actions that occur at the interfaces of the involved objects. An
interaction between objects A and B is initiated through a request
submitted at the interface of object A that is directed towards the interface
of object B. As a result, a request action occurs at the interface of object B.
This action triggers the behaviour of object B and may result in a reply
action. The reply submitted at interface B results in a reply delivered at
interface A. The primitive actions that constitute an interaction are shown
in Figure 2-5.

 Interface A Interface B

Request
(submit) Request

(deliver)

Reply
(submit) Reply

(deliver)

Object
Internal
Behaviour

An interaction can be unidirectional or bi-directional. A unidirectional
interaction consists of request actions (e.g., a request submitted at interface
A and a request delivered at interface B). For a bi-directional interaction
reply actions follow the request actions (e.g., a reply submitted at interface
B and reply delivered at interface A). In both cases the delivery of a request
triggers the behaviour of the object to which the request is delivered. Figure
2-5 shows the sequence of actions involved in a bi-directional interaction.
An interaction is also known as an invocation of (an interface of) an object.

An object involved in an invocation can have two roles: it can either
initiate or respond to an invocation. In case an object responds to an
invocation, the object plays the server role. If an object initiates an
invocation it plays the client role. The role of an object may change over
time, when it is involved in different interactions. For example, an object
playing the server role may change to a client role after it has received an
invocation.

Figure 2-5
Decomposition of
an interaction

36 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

The signature of the interface defines the set of allowed invocations. An
operation defines the structure of the data that can be exchanged in a
potential interaction between a client and a server object. The structure of
the data that is exchanged during an interaction is defined in the operation
signature. A signature of an operation consists of the name of the operation
(i.e. an identifier), a set of parameters and for each parameter its type and
causality. The causality of a parameter determines whether a parameter is
passed from a client to a server, from a server to a client, or in both
directions.

Figure 2-6 shows the interface signature of an object. The signature
consists of operations Op1, Op2 and Op3. The first operation has two
parameters of type t1 and t2. The second operation has one parameter of
type t3 and the third operation has no parameters.

Invocation

Op1 (in a:t1, out b:t2)

Op2 (inout c:t3)

Op3 ()

Server
Object

Interface A

Client
Object

Interface B

A client and server object may be running on the same computing system,
but they may also be running on different computing systems. In the latter
case some means of communication is needed to ensure that a request
submitted by a client is delivered to the server object.

In both situations however a reply is delivered some time after a request
has been submitted. When client and server objects are located on different
computing systems this delay may be significantly larger than when they are
located on the same computing system. A client may perform additional
(inter)actions after it has submitted a request and before it receives the
reply. This is called an asynchronous interaction. When a client waits until it
has received a reply, the interaction is called synchronous.

2.3.4 The benefits of objects

The use of objects for modelling systems, offers a number of benefits to the
designer. Object technology is designed to offer a high degree of
modularity, extensibility and re-usability [Me88]. Each of these benefits is
briefly reviewed, in order to demonstrate the benefits of employing objects
as primitive modelling concepts.

Figure 2-6 Client-
server interaction

 VIEWPOINTS 37

An object encapsulates its state and behaviour and is an abstraction of
part of a system. The state of an object can only be changed through an
interaction at the interface of the object. Therefore, objects are the modular
building blocks with which a system can be designed and built. The
modularity that results from the use of objects ensures that large and
complex systems can be composed from smaller objects.

The behaviour of an object is initiated by the invocation of an operation.
How an object reacts to an invocation depends on its current state and the
behaviour specification of the object core. Two objects, instantiated from
different classes, can have the same behaviour specification for a method.
This is enabled through polymorphism and implementation inheritance.
Consequently, the interface and behaviour specification of an object are re-
usable.

A subclass can be defined through interface inheritance. Inheritance is a
way to extend the functionality of an object by adding extra operations,
attributes or both. Overriding the methods of a super class can change the
behaviour specification of the subclass. This is another way of introducing
polymorphism into a design. Through interface inheritance and
polymorphism, object models that already exist become extensible.

The main benefits of objects are modularity, re-usability and
extensibility. Modularity is achieved through encapsulation, abstraction and
composition. Re-usability is achieved through polymorphism. Extensibility
is accomplished through inheritance and polymorphism. These
characteristics of object models give the designer a large degree of flexibility
and freedom. The designer is free to re-use already existing and proven
object models and has the flexibility to extend and change the behaviour of
the objects in these models when needed. This late binding between
interface specification and behaviour specification introduces a large degree
of flexibility.

2.4 Viewpoints

A designer of a distributed system has to take into account many
characteristics of a distributed system, such as geographical distribution,
lack of global state, etc. The development and manipulation of a design of a
distributed system is a complex task. Such a task becomes even more
complex when the design concerns an open distributed system, because the
designer then also has to take into account the rules that guarantee the
interoperability between parts of the system.

Abstraction and refinement are important means to manage complexity.
Modelling system parts as objects offers a number of benefits to a system
designer and helps to divide and conquer the complexity of a design. An

38 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

additional design principle is needed that enables a designer to deal with
the various aspects of a distributed system in different models. This is
supported by the notion of viewpoints.

A viewpoint on a distributed system results in an abstraction that is achieved using
a selected set of concepts in order to focus on relevant concerns within that system.

The need for viewpoints arises from the multiple perspectives from which a
design is often developed and manipulated. These perspectives originate
from the roles that a designer can assume during the design process. The
need for viewpoints becomes even more apparent when a team of designers
is considered, where each member of the design team is responsible for
different aspects of a design. As a result, a model for each perspective of the
system is developed. Viewpoints are also used in other disciplines. For
example, consider the technical drawings of a three dimensional object in
which one drawing shows a top perspective and another drawing shows a
side perspective. Both drawings concern the same object, but model the
three dimensional object from different perspectives, because a three
dimensional object cannot be represented on a two dimensional piece of
paper with sufficient detail for its construction.

A design of a system developed from a particular viewpoint is in an
abstraction of the system. Another design of the same system developed
from another viewpoint offers yet another abstraction. Both abstractions
must be related, but they may not be ordered in the sense that one design is
a refinement of the other. Viewpoints can be related by a partial overlap
between the set of concepts used to create a design from one viewpoint
with the set of concepts used to create a design from another viewpoint.
Another way to relate viewpoints is to established consistency rules between
some of the concepts used in each viewpoint. These consistency rules are
expressed as correspondence relations.

The RM-ODP [ODP2] defines five viewpoints: enterprise, information,
computational, engineering and technology viewpoint. We adopt the
computational and engineering viewpoint for this thesis. We introduce the
deployment viewpoint that is concerned with the deployment of software
components in a run-time environment. An overview and motivation for
the use of these three viewpoints follows below.

2.4.1 Computational viewpoint

The computational viewpoint considers the logical partitioning of
applications into a set of interacting objects. The partitioning is logical in
the sense that applications are structured independent of the computing
systems on which their interacting objects run.

Definition 4
Viewpoint

 VIEWPOINTS 39

The computational viewpoint specifies the individual, logical parts,
which collaborate with each other through interactions. The computational
parts are also referred to as computational objects. Computational objects can
interact with each other after a binding between their interfaces has been
established. Figure 2-7 shows an example of an application that is
partitioned into a set of computational objects. The bindings between these
computational entities are depicted as lines between the interfaces of the
computational objects.

 Application

Computational
Object

binding

Computational
Object

Computational
Object Computational

Object interface

A binding between two computational objects must be established before
they can interact. When the binding establishment is modelled explicitly, in
terms of the actions that results in a binding we talk about explicit binding.
Otherwise, a designer may omit the binding establishment from a design
and assume that a binding is established upon the first interaction between
two objects. This is called implicit binding. In certain cases, the properties of
the binding must be observed or modified during the lifetime of the
binding. When this is the case the control over the binding is modelled as a
binding object. Usually a binding object is the result of an explicit binding,
but this is not always the case.

The computational viewpoint on a distributed system can be organised
as a set of specifications, where each specification deals with a different
level of abstraction. Through composition and decomposition, a
computational specification can be organised into a hierarchy. A
computational object that is specified at a higher level of abstraction can be
decomposed into a set of computational objects not represented in a
specification at a lower level of abstraction. In a similar way, complex
computational objects can be composed from a set of less complex
computational objects.

Figure 2-7
Computational view
on an application

40 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

Computational
Object

Binding Object

Computational
Object

Computational
Object

Computational
Object

Computational
Object

Figure 2-8 shows an example of a decomposed binding object. The binding
object is decomposed into three computational objects. These objects use
direct bindings to interact.

2.4.2 Distribution transparencies

Distribution transparencies are used to hide aspects of open distributed
systems that arise from the physical and logical distribution of functionality
across the resources of the system. To simplify the design task of distributed
applications, a distributed system should offer an infrastructure that
supports a set of distribution transparencies. A designer selects the
transparencies that must be provided by the infrastructure. Aspects of
distribution that are not covered by the infrastructure should be handled by
application designers themselves.

Application designers can abstract from the mechanisms necessary to
deal with the different aspects of distribution and can therefore focus on
the application design. During application design only the required
transparencies must be expressed and no design effort is needed for the
realisation of these transparencies. The following definition is used in this
thesis:

A distribution transparency is a property offered by a distributed system, to hide
one or more of the characteristics of the system caused by the distribution of
resources, with the purpose to simplify the task of distributed application design.

A list of distribution transparencies is found in [ODP2]. The following
constitutes a non-exhaustive list of distribution transparencies:
– access transparency, which masks differences in data representation and

invocation mechanisms that enables interworking between objects. This
transparency hides many of the problems of interworking between
heterogeneous systems, and is generally provided by most object
middleware platforms.

Figure 2-8
Example
decomposition of a
binding object

Definition 5
Distribution
transparency

 VIEWPOINTS 41

– failure transparency, which masks from an object the failure and possible
recovery of other objects (or itself) to enable fault tolerance. When this
transparency is provided, the designer can assume an idealized world in
which the class of failures hidden by this transparency does not occur.

– location transparency, which masks the use of information about location in
space when identifying and binding to interfaces. This transparency
allows objects to refer to each other by logical names, independent of
their actual physical location.

– migration transparency, which masks from an object the ability of a system
to change the location of that object. Migration is often used to achieve
load balancing and reduce latency.

– relocation transparency, which masks relocation of an object from other
objects bound to it. Relocation allows system operation to continue
even when migration or replacement of some objects creates temporary
inconsistencies in the view seen by other objects.

– replication transparency, which masks the use of a group of mutually
behaviourally compatible objects to service a single interface.
Replication is often used to enhance performance and availability.

– persistence transparency, which masks from an object the deactivation and
reactivation of other objects (or itself). Deactivation and reactivation are
often used to maintain the persistence of an object when the system is
unable to keep processing, storage and communication resources
continuously allocated.

In each case, the use of the transparencies by an application designer
involves the definition of a set of transparency requirements. The set of
requirements states where the transparency is needed (i.e., which
interactions it affects). Transparencies may apply throughout a system, or
only to some specific interfaces. For example, a designer can indicate the
objects and interfaces to be supported by replication.

The solution that realises a transparency is not the responsibility of the
application designer, but must be provided by the infrastructure. That
solution takes the form of a set of rules for transforming the specification of
a requested transparency into a specification in which selected interactions
or objects are expanded to include mechanisms that provide that
transparency.

2.4.3 Engineering viewpoint

The engineering viewpoint considers the infrastructure that is needed to
offer distribution transparencies to computational objects. This comprises
support at the end systems as well as the support for the communication
between end systems.

42 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

Whereas a computational design hides aspects of distribution and does
not consider the physical distribution of computational objects, an
engineering design considers the system parts that offer distribution
transparency. A design from the engineering viewpoint reveals the functions
and mechanisms needed to realise the support for the transparencies that a
computational specification requires. These functions and mechanisms are
modelled as objects and therefore referred to as engineering objects. An
engineering specification describes the behaviour and collaborations of a set
of engineering objects that realise a run-time environment for the execution
of a physically distributed application. An engineering specification aims for
an efficient support run-time environment.

RM-ODP defines a number of concepts that can be used to develop an
engineering viewpoint model of a distributed system. In this thesis we use
the concepts of engineering object, capsule and channel. Engineering
objects are used to structure the functions and mechanisms revealed from
the engineering viewpoint. Each engineering object is located in one single
capsule. The capsule is a unit of failure, which means that failure of a
capsule implies that all objects located in the capsule fail. A capsule
represents an operating system process. In case an engineering object
interacts with another object that is in a different capsule, a channel for
communication is needed. A channel between engineering objects in
different capsules represents the services offered by a communication
protocol.

Figure 2-9 depicts the engineering concepts used in this thesis.

Channel

Capsule

Engineering
Object

Engineering
Object

Engineering
Object

Engineering
Object

Capsule

Engineering
Object

Engineering
Object

Figure 2-9 An
engineering view of
a distributed
system

 VIEWPOINTS 43

2.4.4 Deployment viewpoint

While the computational view defines the functional partitioning of an
application and the engineering view reveals the infrastructure support and
the geographical distribution of objects, none of these views considers the
deployment of software on computing systems. Deployment concerns post-
development activities such as configuring, installing, updating and even de-
installing a software artefact [HHW97, RAC+01]. The deployment
viewpoint is a meta-model that describes the concepts for constructing a
deployment design. The main concepts of the deployment view are the unit
of deployment and the deployment descriptor.

A class could be used as a deployable unit since it offers the ‘building
plan’ or blueprint for creating an object. However, a class lacks context and
the necessary information for deployment. The objects instantiated from
one class may depend on objects instantiated from another class. In
addition, a third party cannot configure a class independently. Therefore, a
class is not a suitable unit of deployment.

A component is a unit of independent deployment [Sz97]. A component
consists of one or more classes and optionally contains a set of initial
interfaces, which are the starting point for interacting with the component.
A deployment view reveals the distributed resources, i.e., computer systems
and network elements, where components can be deployed. Components
are deployed in a run-time environment, such as an operating system or a
virtual machine, which offers basic functions for managing processing,
storage and communication resources. A deployment specification shows
the deployment characteristics of a component in a deployment descriptor.
The deployment descriptor defines the policies that constrain the
execution, the initial state of the component and the functions required
from the run-time environment.

The concepts used in this thesis to create a deployment view model are
component, run-time environment, node and deployment description.
Figure 2-10 shows a component subject to a deployment description,
deployed in a run-time environment at a node. We have decided not to use
the term ‘node’ in the engineering viewpoint in this thesis, although it
belongs to the RM-ODP engineering viewpoint, because it is considered a
deployment aspect that can better be omitted from an engineering design.
The engineering viewpoint does not reveal any deployable units; therefore it
does not seem desirable to reveal nodes in the engineering view.

44 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

 Component

Deployment
Descriptor Run-time env.

Node

2.4.5 Correspondence

Viewpoints are used to capture different aspects of the same system. The
benefit of using viewpoints is that the complexity of a distributed system
becomes more manageable. However, viewpoint specifications must be
consistent in order to ensure a sound design without contradictions.
Therefore the correspondence between the viewpoints must be defined
precisely. A correspondence relation between the elements of viewpoint
specifications allows the mutual consistency of these specifications to be
checked.

Concerning the correspondence between the computational and
engineering viewpoint, a relation exists between a computational object and
one or more engineering objects. This means that the behaviour that occurs
at the interface of a computational object corresponds to the behaviour that
occurs at the interfaces of a set of engineering objects. An example of such
a correspondence relation is shown in Figure 2-11. In this example, two
computational objects correspond to two basic engineering objects. The set
of engineering objects to which a computational object is mapped is called a
basic engineering object. Other engineering objects realise the distribution
transparencies that a basic engineering object requires. Transparency
requirements originate from the computational specification. For example,
location transparency for the computational objects is realised by a number
of engineering objects and a channel.

Figure 2-10
Concepts of the
deployment
viewpoint

 VIEWPOINTS 45

Engineering
Object

Computational
Binding Computational

Object

Basic Engineering
Object

Channel

Correspondence

Capsule

Engineering
Object

Computational
Object

Capsule

Engineering
Object

Basic Engineering
Object

Engineering
Object

Correspondence

The correspondence relation allows a designer to check if the behaviour of
the computational objects corresponds to the engineering objects to which
these computational objects correspond.

Concerning the correspondence between the engineering and the
deployment view, a relation must be defined between a set of engineering
concepts (classes, objects and channels) and a component. An example of
such a correspondence is shown in Figure 2-12.

Component

Correspondence

Transport
network

Correspondence

Component

Run-time env.

Deployment
Descriptor

Run-time env.
Deployment
Descriptor

Figure 2-11
Example of a
correspondence
between viewpoint
specifications

Figure 2-12
Another
correspondence
example

46 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

2.4.6 Viewpoint usage

Each viewpoint is related to a set of modelling concepts. A viewpoint design
is an instance of the modelling concepts related to that viewpoint. The set
of modelling concepts related to a viewpoint is a meta-model of that
viewpoint. RM-ODP defines a viewpoint language for each viewpoint. The
elements of a viewpoint language can be used to construct a viewpoint
meta-model.

Some have adopted parts of the RM-ODP viewpoints, defined their own
viewpoints and created a meta-model for each viewpoint [HKB01]. Usage
of a meta-model to define the modelling concepts for a viewpoint, leads to
a notion that describes a set of meta-models. This is defined by a concept
space.

A concept space is a set of meta-models that may be related through a
correspondence relation between some of the modelling entities of these meta-
models.

A graphical representation of the modelling concept space used in this
thesis is shown in Figure 2-13. The black dots represent modelling
concepts associated with each viewpoint. A correspondence relation can be
defined between modelling entities that are in different meta-models.

 Modelling concept space

Computational
Meta-model

Deployment
Meta-model

Engineering
Meta-model

correspondence

A computational design is an instance of the computational meta-model. In
the same way the engineering meta-model is used to develop an engineering
design. A deployment design is a design that is developed using the
deployment meta-model. The computational meta-model used in this
thesis is based on the computational viewpoint language. The engineering
meta-model is based on the engineering viewpoint language, but introduces
some modifications to the engineering language. The deployment meta-
model is added to model components.

Definition 6
Concept space

Figure 2-13 An
example of a
modelling concept
space

 VIEWPOINTS 47

Viewpoints are used to separate the concerns of a designer and are
useful because a designer can play different roles in the design of a
distributed system. The viewpoints described in the previous sections can
each be associated with a role that a designer can play. Three roles are
distinguished: application designer, infrastructure designer and deployment
designer. These roles can be fulfilled by three individuals, but may just as
well be fulfilled by a single person.

The application designer is responsible for developing a computational
design of a distributed system. A computational object of a design can be
decomposed into several computational objects, resulting in a design at a
lower level of abstraction. Repeating decomposition results in multiple
levels of abstraction of a design. The application designer imposes a number
of requirements on the distribution transparencies supported by the
infrastructure.

The infrastructure designer is responsible for developing an engineering
design of a distributed system. An engineering object of a design can also be
decomposed into several engineering objects, resulting in a design at a
lower level of abstraction. The engineering design defines what distribution
transparencies are supported and how.

The deployment designer assembles computational classes into more
coarse grained components. A component corresponds to one or more
computational classes. The deployment designer also decides which of
computational interfaces correspond to the external interfaces of a
component. The deployment designer also derives the external interfaces of
a run-time environment from the supporting infrastructure as defined in an
engineering design. Components created by a deployment designer must be
deployable on this run-time environment, therefore must be able to
interact with the external interfaces of a run-time environment.

The flow of specifications for a typical development process and how
they are used by each designer role is shown in Figure 2-14.

48 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

Application
Designer

requirements for
distribution

transparencies

support for
distribution

transparencies

Infrastructure
Designer

Computational
Specification 1

Computational
Specification 2

Computational
Specification N

Engineering
Specification 1

Engineering
Specification 2

Engineering
Specification M

Deployment
Designer

Run-time env.
Specification

Component
Specification

The separation between the three roles as depicted in Figure 2-14 enables
the development of a generic infrastructure that supports distribution
transparencies that are applicable for many distributed applications.
Infrastructure designers can specialise in the development of such an
infrastructure and concentrate on optimising the infrastructure design.
Application designers can focus on the logic of a distributed application
without spending any effort on solving problems caused by distribution.

Eventually, models derived from the modelling concept space must be
converted to software. Preferably this should be (partially) automated.
Automated support for the conversion of models to software can be
provided if transformation rules are defined from the entities in the meta-
model to the target environment. This requires that a meta-model for the
target environment is available or that it is constructed. The set of meta-
models for possible target environments is called the implementation
concept space. Figure 2-15 shows a set of models that is converted to
software using transformation rules defined between the meta-models.

Figure 2-14 Usage
of viewpoint
specifications

 MIDDLEWARE FOR DISTRIBUTED OBJECTS 49

 Modelling concept space

Computational
Meta-model

Engineering
Meta-model

Deployment
Meta-model

Computational
Model

Deployment
Model

Engineering
Model

Implementation concept space

Environment X
Meta-model

Environment Y
Meta-model

Transformation
rules

Environment X
model

Environment Y
model

Code
generation

Used to
develop

Used to
develop

Code generation can easily be automated as code generators that
implement the transformation rules between the modelling concept space
and the implementation concept space. The feasibility of this approach has
already been demonstrated [BoKa02]. A benefit of this approach to create
software is that existing models can be transformed to software even when
new target environments become available.

2.5 Middleware for distributed objects

The viewpoints and the designer roles described in the previous section
entail a number of responsibilities in the overall design of a distributed
system. The infrastructure designer is responsible for the design of the
supporting infrastructure for application objects. The level of support that
must be provided by the infrastructure is determined by the distribution
transparencies that an application designer requires.

The application designer designs distributed object applications, i.e.,
distributed applications modelled as objects. The supporting infrastructure
for these applications is denoted as a middleware for distributed objects. This
leads to the following definition:

Middleware for distributed objects is a software layer that provides distribution
transparencies, with the purpose to support computational objects.

The middleware is not part of an application and is also not part of the
system software, i.e., firmware or operating system, which runs on a
computing system. In literature, the term middleware is an overloaded
term, as it does not always concern a supporting infrastructure for
distributed object applications. In this thesis, the focus is on middleware
that simplifies the design of applications that consist of objects. Other types
of middleware, such as transaction monitors and message-oriented
middleware fall outside the scope of this thesis.

Figure 2-15
Automated code
generation based
on meta-model
transformations

Definition 7
Middleware for
distributed objects

50 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

2.5.1 Positioning middleware

To position the middleware for distributed objects in the context of a
distributed system, we propose a structure for a distributed system. The
structure has been chosen in accordance with the viewpoints introduced in
section 2.4.

Distributed systems consist of a conglomerate of hardware and software
components that are designed to automate some business process or some
end-user task. The automation of a process or task is achieved by the
deployment of one or more software components in a processing
environment. At this abstraction level, the (distributed) applications consist of
one or more application components that execute in a distributed processing
environment. A deployment designer constructs the deployment specification
using the computational specification and resource description of the
distributed processing environment as input.

A refinement of the distributed processing environment (DPE) exposes
the middleware and a distributed resource platform. The middleware consists of a
number of software components. These software components are called
infrastructure components. A deployment designer constructs the infrastructure
components using the engineering specification and the resource
description of the distributed resource platform as input.

The distributed resource platform (DRP) consists of various hardware
systems, such as server systems, desktop computers, portable computers
and personal handheld devices, and operating systems that belong to the
hardware. The DRP is potentially heterogeneous because different vendors
can produce the hardware systems and each hardware system has its own
firmware and/or operating system. These hardware systems are
interconnected by a transport network, which offers communication services.
The resources offered by the DRP are represented by the native
communication and communication environment (NCCE). Figure 2-16 shows
how the elements of distributed systems are related.

 MIDDLEWARE FOR DISTRIBUTED OBJECTS 51

Distributed
Resources
Platform

Transport network

 Application
Component

Middleware
Infrastructure

Component

(Distributed)
Applications

Distributed
 Processing
Environment Native Computing

and
Communication
Environment

Node Node

The NCCE provides the run-time environment to the infrastructure
components. Multiple instances of NCCEs and infrastructure components
that are connected by a transport network constitute the DPE. The DPE
provides the run-time environment to the application components.

2.5.2 Functions and mechanisms

The middleware can be characterised by the functions it offers. Functions are
needed to support the interactions between computational objects. The
capabilities of the middleware are described in terms of functions
supported by the middleware. Functions are also referred to as infrastructure
services. Functions can be fundamental, i.e., providing a minimal required
subset of functionality, or widely applicable to the construction of a
middleware, i.e., providing functionality that is convenient for many
applications.

The functions supported by the middleware are exposed in an
engineering viewpoint of the system. However, some functions may have
transparency requirements and could therefore best be designed from a
computational viewpoint. In this case a function becomes the user of other
functions offered by the middleware. A designer of a function with
transparency requirements has to switch to the role of application designer
in order to deliver a computational specification.

The RM-ODP specifies a number of functions that can be used to
construct parts of a middleware. The standard does not prescribe how these
functions must be combined to construct a middleware neither does it
specify the exact signature of the interfaces to objects that realise a
function. Some of these functions are:
– Node management functions: control and manage the processing,

storage and communication functions within a run time environment.

Figure 2-16
Overview of
elements in
distributed systems

52 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

– Object management functions: concern the activation, deactivation,
check pointing and recovery of objects.

– Event notification functions: record events and manage event histories
for future reference.

– Replication functions: ensure that a group of objects appear as a single
object.

– Transaction functions: coordinate and control a set of transactions.
– Trading functions: mediate advertisement and discovery of interfaces.
– Repository functions: store data, type information and meta-data.
– Security functions: manage security aspects such as non-repudiation,

integrity and confidentiality.

The functions describe the middleware capabilities, but not how these
capabilities are realised.

An infrastructure designer uses mechanisms to refine the specification of a
function. The Oxford Dictionary defines a mechanism as “the machinery by
means of which some particular effect is produced”. However, the Concise
English Dictionary gives a more suitable definition:

A mechanism is a system of correlated parts, working reciprocally together, as a
machine.

A node management function, for example, can be realised by a set of
engineering objects. The engineering objects work together to provide a
basic engineering object with control and management of processing,
storage and communication resources.

2.5.3 Benefits

Studies have shown that the use of middleware to support distributed
applications offers several benefits. The following benefits have been
identified [BHK+96]:
– Interoperability is the ability of two or more objects to communicate and

co-operate despite differences in their implementation language and
execution environment. Interoperability allows one object to use the
service of another object existing in some system, without knowing the
physical details of the other system. Middleware enables interoperability
by hiding the mechanisms used to communicate between disperse
computing nodes.

– Portability allows the re-use of components on various computing nodes.
Binary portability means that components can execute on computing
nodes with different hardware architectures. Source code portability
means that the source code of a component can be compiled to native

Definition 8
Mechanism

 QOS AWARE MIDDLEWARE 53

machine code for various computing nodes, without changing the code.
A middleware enables both forms of portability by encapsulating system
specific interfaces in objects with a standardised interface.

– Coexistence means that old and new components of the system can co-
exist. Parts of the middleware and applications, i.e., the infrastructure
components and application components, can be replaced with new
components. This is enabled through abstraction, interface sub typing
and polymorphism.

– Reliability and availability of distributed applications can be enhanced by
the middleware. Critical application components can be replicated on
multiple computing nodes. The middleware can contain the
mechanisms needed to manage the number of replicated objects and to
synchronise the state of replicas.

– Extensibility is the property that functionality can be added on demand.
Adding new mechanisms can extend the functionality of the middleware
and therefore offer support for additional transparencies to application
designers. This is enabled through inheritance and polymorphism.

– Configurability is the property to configure and reconfigure the
application components on-line. The middleware can provide support
to relocate objects to different computing systems and thus provide the
means to change the configuration of a distributed application.

– Implementation language independence is the ability of programmers to
implement application components in any suitable language they
choose. The middleware can support multiple languages, because the
infrastructure services are offered through interfaces that can be
mapped to several implementation languages.

2.6 QoS aware middleware

End users of a distributed application have a perception of the quality of
that application. For example, a user may perceive the responsiveness of a
application as quick or slow. An end user may emphasise different quality
characteristics of the application. The quality that an end user perceives is
to a large extent determined by how many processing, storage and
communication resources have been assigned to the application
components that constitute the distributed application. Quality of Service
(QoS) concerns the quality characteristics that an end user perceives of an
application.

Currently, most commercially available infrastructure components are
still limited to the support of best-effort QoS to applications. This means
that these infrastructure components attempt to assign resources to
components as much as possible, but without any commitment that

54 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

sufficient resources will be available all the time. Best-effort QoS constitutes
an obstacle to the use of middleware systems in QoS critical applications, or
in case services are offered in the scope of Service Level Agreements with
strict QoS constraints.

This section introduces an initial set of concepts that is used for
modelling a QoS aware middleware and identifies the role of a QoS aware
middleware in the support of distributed applications.

2.6.1 Quality of Service

The notion of QoS is broad and is applied to many areas, such as end-user
quality perception, ergonomic quality of user interfaces, network
performance, system performance. Several generic definitions of QoS have
been provided, with the purpose to cover the many areas to which QoS is
applied.

Some of these generic definitions are:
– QoS is user-perceived performance or service as experienced by the

user [Fr96];
– QoS is a set of qualities related to the collective behaviour of one or

more objects [ISO X.641];
– Quality: the totality of features and characteristics of a product or

services that bear on its ability to satisfy stated or implied needs
[ISO8402];

– QoS is a set of user-perceivable attributes, which describe a service the
way it is perceived. It is expressed in a user-understandable language
and manifests itself as a number of parameters, all of which have either
subjective or objective values. Objective values are defined and measured
in terms of parameters appropriate to the particular service concerned,
and which are customer-verifiable. Subjective values are defined and
estimated by the provider in terms of the opinion of the customers of
the service, collected by means of user surveys [Me91, Mej92];

– QoS is the degree of conformance of the service delivered to a user by a
provider with an agreement between them [P806]

A common property of these QoS definitions is the user perception of the
quality characteristics of a service. However, user perception is influenced
by many subjective parameters, which are outside the control of an
application or infrastructure designer. QoS aspects such as user needs,
customer satisfaction or price/quality ratios are not considered in this
thesis, because they cannot be controlled by an application or infrastructure
designer.

 QOS AWARE MIDDLEWARE 55

The focus in this thesis is on the application QoS requirements and how
these requirements can be supported by the middleware. We develop
facilities to make middleware QoS aware. A middleware system provides
distribution transparencies to applications that are active in a large
heterogeneous distributed system.

There is a wide variety of literature written on QoS and many authors of
recent work capture QoS into a framework [SeCa00], [BeGe97],
[NWX00]. Most QoS definitions involve the user perceived quality. In the
case of a distributed application deployed on an object middleware
platform, the user perceived quality is directly influenced by the quality
characteristics of the applications objects. Application objects are modelled
as computational objects and include binding objects. Therefore, we focus
on the QoS of a computational object and use the following definition:

The QoS of a distributed application is characterised by collection of values (e.g., a
ratio, a maximum, an average, a variance, a probability distribution) acting on
the properties (e.g., a loss, a delay, a failure rate, availability) of its computational
objects.

From this definition it follows that QoS requirements are the requirements
that an application designer imposes on a collection of measures that act on
a set of properties of computational objects. QoS requirements can be
imposed on client, server and binding objects.

2.6.2 QoS support for application objects

During the design of a distributed application, the client and server
interfaces of the application objects are specified. In principle, this
specification should define the attributes and operations of these interfaces.
Some have referred to this approach as ‘design by contract’ [Me92]. A
contract aims to specify the service provided by an interface in a precise
way. Contracts are divided into four different levels [BJPW99]:
– Syntactical contracts
– Behavioural contracts
– Synchronisation contracts
– QoS contracts

When considering QoS aware middleware, we suppose that the interface
specifications are extended with QoS contracts that can be associated with
the whole interface or with individual operations and attributes. In the case
of a client interface, these statements describe the required QoS, while for a
server interface these statements describe the offered QoS.

Definition 9 Quality
of Service of a
distributed
application

56 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

Objects life cycle
After the objects of a distributed application have been implemented and
assembled into components, the application components are deployed. We
consider the general case in which persistent objects and late binding is
supported by the middleware. In this case, an object has the following life
cycle:
1. Object creation, in which interface references for the server interfaces of

an object are created and can be referred to by other objects;
2. Object activation, in which an object starts execution, which implies

that all local resources necessary for the object to execute should be
properly allocated;

3. Object deactivation, in which local resources allocated to an object may
be released, although the interface references may still be valid in case
persistent objects are supported;

4. Object destruction, in which the object is deactivated (if it is still active)
and its interface references become invalid.

At object creation time, an initial offered QoS is established as specified
during design time. This is the QoS that a server object intends to offer if
there are sufficient resources available at the time a client binds to it. A QoS
aware middleware can use object activation to refine the offered QoS, by
restricting the ranges originally described for the offered QoS at design
time. The run-time status of the middleware and the distributed resources
platform should make it possible to determine this offered QoS more
precisely.

Explicit binding
Object interfaces have to be bound to each other in order to allow these
objects to interact through the middleware. In some cases, this binding
happens implicitly when the client object issues a request (implicit
binding).

For QoS aware middleware platforms, however, implicit binding is not
desirable, since the QoS requirements may demand that resource allocation
procedures are performed just before the request is executed.
Unfortunately, we cannot predict the speed and reliability of these
procedures. In the worst case, we may still have to activate the server
object. This means that we cannot always guarantee the QoS requirements
by using implicit binding. Therefore, in QoS aware designs explicit binding is
necessary, which consists of taking explicit actions at the computational
level in order to establish the binding before interacting.

When explicit binding is used, the client object requests the
establishment of the binding, giving to the middleware a reference to a
server interface. This request also contains the required QoS, which could

 QOS AWARE MIDDLEWARE 57

be retrieved from a QoS specification repository. The middleware platform
then locates the server object. In case the server object has not been
activated, the middleware platform activates this object and continues the
establishment procedure. After the middleware is sure that the object is
active, it compares the offered QoS with the required QoS and uses its
internal information to determine an agreed QoS. This process is called QoS
negotiation. Negotiation is only successful if the agreed QoS falls within the
ranges prescribed by the client object in the required QoS. In case the
binding establishment has been successful, the client and server objects are
informed that a binding has been built. From this moment on these objects
can interact through the binding. Figure 2-17 shows the establishment of a
binding using a QoS aware middleware.

QoS-aware middlewareQoS-aware middleware

client object

required
QoS

server object

offered
QoS

request for
binding

agreed
QoS

binding
established

The agreed QoS is determined by considering the required QoS on one
hand, and the composite QoS capabilities of the server object (the offered
QoS) and the middleware on the other hand. The agreed QoS serves as a
contract between the application objects and the middleware platform,
which should be respected during the operational phase when the objects
interact through the binding.

The binding establishment may also result in the creation of a binding
object. This object binds the client object and the server object, and offers a
control interface that allows, for example, the inspection and modification
of the agreed QoS.

Our approach considers that a binding has been successfully established
and that the agreed QoS has to be maintained. The QoS aware middleware
is responsible for that, and is constantly adjusting its internal characteristics
and the usage of computing and communication resources in order to
achieve it.

Figure 2-17
Binding
establishment using
a QoS aware
middleware

58 CHAPTER 2 MODELLING CONCEPTS AND PRINCIPLES

2.7 Conclusions

This chapter introduces the notion of a distributed system and outlines a
number of general characteristics of distributed systems. The design of a
distributed application for a potentially heterogeneous distributed system is
a complex task. Therefore, design concepts and principles that are powerful
enough to express various aspects of a distributed system are necessary to
perform this task. These concepts are defined in this chapter.

The modelling concepts presented in this chapter are derived and
adapted from the RM-ODP standards. A key design principle of RM-ODP
is the use of distribution transparencies. Distribution transparencies enable
a distributed application designer to hide distribution aspects in a selective
manner. Through the use of viewpoints on a distributed system, an
application designer can focus on certain aspects of a distributed system,
while abstracting from other aspects. Three viewpoints are used in this
thesis: the computational, engineering and deployment viewpoint. A
computational viewpoint design selectively hides aspects of distribution.
The engineering viewpoint is concerned with resolving the symptoms of a
distributed system, such as remoteness, heterogeneity and autonomy. The
deployment viewpoint concerns the physical hardware and software
components that constitute a distributed system at run time.

The notion of ‘object’ is used as an elementary unit of specification for
all viewpoints. The benefits of using objects to design distributed systems
have been identified in this chapter.

Finally, the concept of middleware for distributed objects is defined.
This middleware is a software layer that offers a set of functions to
application designers, which can be used to support a distributed
application. In case of a QoS aware middleware, some of the functions
enable the establishment of a binding between objects that is subject to an
agreed QoS. The infrastructure designer is responsible to design the
functions offered by the QoS aware middleware.

Chapter 3

3. Overview of the research area

This chapter situates the area of research to which this thesis contributes.
One of the aims of this thesis is to advance the technological

developments of object middleware platforms through the addition of
facilities that can control the qualitative aspects of the objects deployed on
the middleware. Through these facilities future object middleware
platforms can offer support for Quality of Service (QoS). This chapter
identifies and discusses the technological and scientific developments that
contribute to the advancement of distributed processing environments.

Observations presented in this chapter are used in subsequent chapters
to derive requirements, models and solutions for a QoS aware distributed
processing environment. Ideally, the models and solutions for a QoS aware
distributed processing environment should be in line with the already
existing standards, architectures and technologies for such environments.
Such an alignment identifies the areas of improvement and increases the
acceptance of the models and solutions proposed.

This chapter is organised according to the subjects identified in section
3.1. Sections 3.2 to 3.5 present the main issues and developments in the
areas of object middleware architectures, network technology, QoS
architectures and software engineering technologies, respectively. Section
3.6 presents related work that is also concerned with the architecture and
design of a QoS aware DPE. Section 3.7 identifies requirements and
opportunities for advancement of distributed processing environments.

3.1 High-level overview

The parts that constitute a distributed processing environment (DPE) can
be obtained from various vendors or open source communities. As a result,
a DPE consists of a potentially heterogeneous set of hardware and software
components.

60 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

Business organisations take independent decisions from which sources
their hardware and software components are obtained. Distributed
applications often cross the boundaries of one or more business
organisations and therefore require information processing and
communication systems to interwork. To facilitate the interoperability
among these systems, standards have to be established that manufacturers
must use to build information processing and communication systems.
Several standardisation organisations and industrial consortia have
recognized the need for interoperability standards. The standardisation
organisations of concern to this thesis are IETF, W3C, ISO-ITU, SUN JCP
and OMG.

Developments in the architectures and technologies produced by
research communities and standardisation organisations have an impact on
the structure of a DPE. Research efforts aimed to advance the one or more
parts or aspects of a DPE, should take into account these developments.

The design of a QoS aware distributed system, developed in chapter 6,
takes into account the developments of several architectures and
technologies. Current object middleware architectures are considered for
an engineering viewpoint design of the distributed system. Current software
engineering technologies are considered for a computational, engineering
and deployment viewpoint design of the distributed system. Current QoS
architectures are considered for the definition of QoS concepts and models
that can capture the QoS aspects of the distributed system. Current
network technologies are considered for the choice of the parts that
constitute the distributed resource platform of the distributed system. The
subjects of concern to this thesis are categorised into object middleware
architectures, software engineering technologies, QoS architectures and
network technologies.

Figure 3-1 shows the subjects and standardisation organisations that are
covered in this chapter.

Figure 3-1
Subjects and
standardisation
organisations
concerning a QoS
aware DPE

QoS-aware DPE Object
Middleware

Architectures

QoS
Architectures

Network
Technologies

Software
Engineering

Technologies ISO-ITU

OMG

IETF

W3C

SUN JCP

 OBJECT MIDDLEWARE ARCHITECTURES 61

The standardisation organisations and consortia depicted in Figure 3-1 have
a number of common goals. They all influence the development of
technologies that can be used to realise a distributed resource platform or a
middleware layer. Most consortia produce reference implementations to
ensure the feasibility of standards and to increase the widespread
acceptance of these standards.

Standardisation is directed at building consensus on some technical
issue. This requires that experts are gathered and that the ideas of these
experts converge into a single specification. Every organisation has defined
its own process and rules that must be followed in order to establish a
standard, but each process is based on iterations and multiple negotiations
to converge and build the consensus. Reference implementations are often
required before a standard is accepted and a growing number of these
implementations become available as open source.

3.2 Object middleware architectures

A middleware platform is an infrastructure that offers support to
distributed applications running in heterogeneous distributed systems. This
section reviews the origin and features of the architectures of three of
today’s most widespread used middleware platforms: CORBA, SOAP and
Java 2 Enterprise Edition. These middleware platforms support
interactions between object-based software components; hence they fall in
the category of object middleware. Before the architectures of these
middleware platforms are explored, the basic functions of object
middleware are discussed.

3.2.1 Basic facilities of object middleware

Object middleware realises the transparencies that distributed object
applications require. In that sense, object middleware is a supporting
infrastructure that application designers assume to be present for the design
of distributed object applications. Ideally, object middleware should
support a computational design with facilities for interface specification,
interface binding and the life cycle management of objects. These basic
facilities and the parts of the computational model that they ideally should
support are shown in Figure 3-2.

Figure 3-2 Ideal
basic object
middleware
facilities

 Computational
Object

Support for binding

Support for interface
specification

 activation

deactivation

Support for life cycle
management

62 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

Object middleware platforms such as CORBA, SOAP and J2EE provide
support for interface binding, interface specification and life cycle
management. These object middleware platforms also define additional
facilities. The standardisation of the functions defined for these platforms is
guided and directed by several standardisation organisations.

3.2.2 CORBA

The Common Object Request Broker Architecture (CORBA) is developed
and maintained by the Object Management Group (OMG). The OMG
produces standards for object technology. The CORBA standards are
directed by the guidelines found in the Object Management Architecture
(OMA). The CORBA standards include interfaces specifications defined
using the OMG Interface Definition Language (OMG IDL).

This section describes the basics of OMG IDL, gives an overview of the
Object Request Broker, presents the OMA and discusses the
standardisation organisations that have an impact on CORBA.

OMG IDL
The OMG IDL is a descriptive language, for the specification of the
interface exposed by a server object. With IDL it is not possible to specify
the behaviour of an object; it only allows the definition of the signature of
an interface. The signature of an interface consists of an interface name, the
operation names and for each operation a) the type of the request
parameters, b) the type of the response parameters and c) the type of the
exceptions that can be raised.

The mapping of IDL to most popular programming languages, such as
C++, Java, COBOL, Smalltalk, Ada, Lisp and Python, has been
standardised by the OMG. An IDL compiler uses an IDL specification to
automatically generate a programming language specific interface according
to the mapping rules defined for that programming language.
Consequently, IDL is called programming language neutral, since mappings
have been defined to nearly every programming language.

Object Request Broker
A CORBA server object gets requests from a client object through the
Object Request Broker (ORB). The ORB is responsible to locate a server
object to deliver a request. A CORBA server object is identified, located,
and addressed by its object reference. Within the context of a CORBA
operation invocation, the server object to which the request is sent is called
the "target object" [ScVi97]. Clients can issue requests that are transferred
by the ORB to the appropriate target object, which processes the request

 OBJECT MIDDLEWARE ARCHITECTURES 63

and returns a response. The complicated task of how these messages are
transferred is hidden from the application objects.

CORBA enables client objects to invoke a target object’s methods
regardless of whether the target object is in the same address space as the
client or located in a different address space on a remote node. The ORB
finds the target object for the request, prepares the target object to receive
the request, and transports the request data. The client interface is
independent of where the target object is located, in what programming
language the target object is implemented, or any other aspect that is not
reflected in the target object’s interface. Figure 3-3 shows the structure of
the ORB and interfaces between the ORB and application objects.

The interface of a CORBA object can be defined statically, i.e., at design-
time, or dynamically, i.e., at run-time. Interfaces are defined statically in an
IDL specification. From this specification an IDL compiler can generate a
programming language specific stub for client-side access and a
programming language specific skeleton for server-side access to an object.

Alternatively, interfaces can be registered with an Interface Repository
(IR) service, which stores the elements of the signature of an interface as
objects, permitting access to these elements. Clients can use the IR to
discover the signature of an interface at run-time and then use the Dynamic
Invocation Interface (DII) to construct a request and then initiate a
request/response sequence. The Dynamic Skeleton Interface (DSI) is the
server-side equivalent of the DII. Server objects can use the DSI to
dynamically define an interface signature at run-time and receive requests
on that interface.

Figure 3-3 Parts of
an ORB

DII Skeletons Object
Adapter

ORB
Inter
face

Client
Object

Server Object

IDL
Stubs

Application
objects

ORB

-- IDL dependent

DSI

ORB Core

Servant

64 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

A servant is a programming language entity that implements one or
more CORBA objects. In procedural languages like C and COBOL, a
servant is a collection of functions that manipulate data (e.g., an instance of
a struct or record) and represent the state of a CORBA object. In OO
languages like C++ and Java, servants are object instances of a particular
class. The Object Adapter (OA) binds the programming language concept
of servants to the CORBA concept of objects.

The relationship between a CORBA object and a servant is like the
relationship between virtual memory and physical memory in an operating
system. Just as a virtual address space is a virtual entity that is bound to
physical memory, a CORBA object is a virtual entity that is bound to a
servant. A virtual memory location can be read and written by a computer
program because of the work performed by the computer's memory
management unit (MMU). The MMU maps virtual memory addresses into
physical memory addresses and ensures that each valid virtual memory
address is mapped to a physical memory storage location. Similarly, the
ORB and the OA co-operate to allow client applications to invoke requests
on CORBA objects and ensure that each valid CORBA object is mapped to
a servant. In addition, the ORB and the OA co-operate to transparently
locate and invoke the proper servants, using the addressing information
stored in CORBA object references [ScVi97].

The Object Management Architecture
The Object Management Architecture (OMA) is composed of an Object
Model and a Reference Model. The Object Model defines how objects
distributed across heterogeneous environments can be described, while the
Reference Model defines, in addition to the ORB, four categories of object
specifications: application interfaces, domain CORBA facilities, CORBA
services and horizontal CORBA facilities.

 OBJECT MIDDLEWARE ARCHITECTURES 65

Application
Interfaces

Object Request Broker

Domain
CORBA
Facilities

CORBA
services

Horizontal
CORBA
Facilities

Figure 3-4 shows the ORB and object specification categories of the OMA
reference model. Objects that interact through the ORB are classified into
the following categories:
– CORBA services: domain-independent infrastructure services that offer

basic functionality considered essential to support computational
objects. An example of a CORBA service is the Naming Service, which
allows clients to find objects based on a name.

– Domain CORBA facilities: business domain-specific infrastructure
services that are for general-purpose use within a specific business
domain. Business domains include healthcare, transportation,
telecommunications and other industry groups that benefit from the
OMG process to standardise domain specifications.

– Horizontal CORBA facilities: application services that cover
computational aspects found in many distributed applications. Unlike
the Domain CORBAfacilities these facilities are potentially useful across
business domains. Examples of horizontal CORBAfacilities: the Printing
Facility, the Secure Time Facility, the Internationalization Facility, and
the Mobile Agent Facility.

– Application Interfaces: object specifications developed for specific
applications. Since the OMG does not develop specification applications
(only generic interface specifications), these interfaces are not
standardised by the OMG.

The OMG specifications for CORBA facilities and CORBA services define
the interfaces to objects in OMG IDL.

Figure 3-4 OMA
object categories
and the ORB

66 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

Standardisation process
The Object Management Group (OMG) is an open consortium that
produces and maintains standards for interoperable applications. Among
the best-known standards produced by the OMG are CORBA (including
OMG IDL and IIOP), UML and XMI. The OMG was founded in April
1989, with the goal to create a marketplace for component-based software
by furthering the introduction of standardised object software. The OMG
has around 800 members including nearly every large company in the
computer industry, many small companies, research institutes and
universities.

The OMG is structured into three major bodies: the Platform
Technology Committee (PTC), the Domain Technology Committee (DTC)
and the Architecture Board. The PTC oversees the advancement of the
ORB and CORBA services. The DTC oversees the development of the
domain CORBA facilities. The Architectural Board manages the consistency
and technical integrity of work produced in the PTC and DTC.

OMG members initiate the OMG standardisation process for some
object specification by writing a Request for Proposal (RFP). Other
members can respond to an RFP by writing a submission. The technical
committees and the architecture board review these submissions in several
iterations. During each iteration the submission is refined and finally, when
consensus is reached, the submission is adopted as an OMG standard.
Adopted specifications are only accepted as formal OMG standards if one or
more member companies have a commercial implementation of the
standard.

Through its liaison with other consortia and standardisation
organisations some of the key OMG specifications have become
internationally accepted. For example, the OMG IDL specification has also
been accepted as an ISO standard.

The International Organization for Standardization (ISO) is a worldwide
federation of national standards bodies from around 140 countries. ISO
was established in 1947. The mission of ISO is to promote the
development of standardization. The scope of ISO includes standards in
virtually all areas, such as, for example, chemistry, photography, textiles and
many other technical fields. ISO carries out standardisation in the field of
information technology together with the International Electrotechnical
Commission (IEC) in the joint ISO/IEC technical committee.

A national member body can initiate an ISO standardisation activity by
proposing a new work item. Once the need for a new work item is
established, a working group of technical experts defines the scope of the
future standard. After that, the national member bodies negotiate the
detailed specification of the standard and build consensus on what should
be in the standard, resulting in a draft standard. In the final phase, a

 OBJECT MIDDLEWARE ARCHITECTURES 67

specification becomes an ISO standard when two-thirds of the participants
that produced the draft and 75% of the members that vote approve the
standard.

3.2.3 SOAP

In 1998 a few companies, such as DevelopMentor, IBM and Microsoft,
initiated the development of Simple Object Access Protocol (SOAP). The
SOAP specification version 1.1 is currently submitted to the Worldwide
Web Consortium (W3C) and will be further developed and maintained by
W3C.

SOAP is a protocol for the exchange of data in a distributed resource
platform. The protocol has been designed to invoke functions on servers,
services, components and objects. Although SOAP does not define an
object model itself, it certainly is an important development in the area of
object middleware because it offers a supporting infrastructure to
application objects.

The SOAP specification can be divided into three parts: a description of
the encoding for messages, a description of how to use messages in a
remote procedure call (RPC) and procedures to exchange messages by
HTTP or SMTP. These parts of the SOAP specification and their
relationship are shown in Figure 3-5.

This section describes the basics of the encoding rules and delivery of SOAP
messages, what basic facilities have been omitted from SOAP in order to
keep it simple and the standardisation organisation that furthers the
development of SOAP.

Message encoding and delivery
SOAP messages are encoded using the eXtensible Markup Language
(XML). XML is a tag-based meta-language that enables a designer to define

Figure 3-5 Parts of
SOAP

RPC

layer

<Envelope> <Envelope>

Application
objects

Message
Encoding

Message
Delivery HTTP or SMTP

Server
Object

Client
Object

Su
pp

or
t p

ro
vi

de
d

by
 S

O
A

P

68 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

data structures using tags. The SOAP specification builds on the W3C
specifications for XML namespaces [Br99] and XML schema [Fa01]. SOAP
messages must be structured according to the definition of a SOAP
envelope, which is defined in an XML schema. Application data must be
represented in a message using the SOAP serialisation rules.

The SOAP envelope consists of a header, which is optional and a
mandatory body (see Figure 3-6). The header contains information that a
recipient uses to determine if and how it can process a message. The body
contains the topic or the payload of the message.

 SOAP
envelope

SOAP header
(optional)

SOAP body

The encoding rules of a SOAP envelope are based on a simple type system.
It has a number of primitive (or scalar) data types and allows more complex
data types to be constructed from the primitive types.

SOAP messages are exchanged using a request-response style message
distribution scheme. The RPC layer is responsible to deliver request
messages to the server, which processes the request and returns a response
message. The RPC layer can use several protocols for message delivery.
Currently, the binding between the RPC layer and HTTP and the binding
between the RPC layer and SMTP is standardised.

The simplicity of SOAP
SOAP offers a lean middleware for distributed objects. A number of issues
have been omitted from the SOAP specification.
– First, SOAP does not have an object model or an interface definition

language for expressing the methods of an object. As a result it becomes
impossible for tools to check the design-time compatibility of a client
and server. A SOAP server must include functions that check the
compatibility of an incoming message and decide if the server is capable
to process it.

– Second, the specification does not define a language mapping. This
means that SOAP does not specify how a data structure, e.g., in Java,

Figure 3-6 SOAP
envelope structure

 OBJECT MIDDLEWARE ARCHITECTURES 69

should be mapped to a SOAP encoded body or how a SOAP message
should be bound to a particular method of a Java object. The developer
that implements a SOAP service establishes these relationships and must
do its own administration for dispatching incoming messages to
implementation objects. As a result, SOAP server objects are most likely
not portable to other SOAP implementations.

– Third, the SOAP specification has no means for object activation or life-
cycle management of objects. There is no standard interface for
registering an implementation object with a SOAP server. This is a
consequence of the two issues mentioned above. Lack of a language
neutral interface specification language and the lack of a mapping of
such a specification language to a programming language, inhibits the
definition of a standard interface to register an implementation object
with a SOAP server. The developer that implements a SOAP service
must also develop code for object activation and life-cycle management.
This too compromises the portability of SOAP server objects.

Standardisation process
The World Wide Web Consortium (W3C) was created in October 1994 to
promote and advance the World Wide Web. The W3C develops common
protocols that ensure interoperability between software systems that need
to share information. Traditionally the activities of the W3C have been
focussed on defining specifications for HTML [W3C98], the URL [Mo97]
and HTTP. W3C has more than 500 member organizations from around
the world and has earned international recognition for its contributions to
the growth of the Web.

The W3C is organised in working groups and has defined a consensus
driven process that leads to W3C standards. The result of a standardisation
activity is a W3C recommendation. Such a recommendation goes through a
number of phases before it becomes an accepted standard. As a
complement to recommendations and standards, W3C releases open
source software as a proof of concept.

3.2.4 Java 2 Enterprise Edition

The Java 2 Platform Enterprise Edition (J2EE) technology provides a
component-based approach to the construction and deployment of
distributed applications. J2EE is an umbrella of specifications that have
been implemented by several vendors. A reference implementation of the
specifications can be downloaded from Sun Microsystems. Sun facilitates a
worldwide community that contributes to the specifications of J2EE.

At the core of J2EE lays the Java language. This section focuses on the
object middleware aspects of J2EE, which are Java, Java Remote Method

70 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

Invocation (RMI) and Enterprise Java Beans (EJB). In addition, the
standardisation organisation for J2EE is discussed.

Java
On 23 March 1995 the latest innovative software of Sun Microsystems Inc.
was announced in a front-page article in the San Jose Mercury News, as
“New software designed to make World Wide Web’s ‘home pages’ more useful... “.
The innovation that made the headlines was the Java programming
language.

The Java programming language is an object-oriented language, that was
designed to have the "look and feel" of the C++ language, but it is simpler
to use than C++. Java can be used to create complete applications that
may run on a single computer or be distributed among servers and clients
in a network. It can also be used to build a small application component or
applet for use as part of a Web page. Applets make it possible for a Web
page user to interact with the page.

Java is based on the principle that the same piece of software should run
on a wide variety of computer systems, consumer devices and other pieces
of hardware. Programs written in the Java programming language run on so
many different kinds of systems because of the Java Virtual Machine (JVM).
The JVM hides hardware and operating system specific features from the
software. Java programs are pieces of object-oriented software that are
converted to bytecode by a Java compiler. Bytecode is a machine independent
binary run-time representation of the Java program that can then be
(down)loaded and executed by the JVM.

A Java programs is robust, here meaning that, unlike programs written
in C++ and perhaps some other object oriented languages, Java objects
cannot contain references to data external to themselves or other known
objects. This ensures that an instruction is inhibited to contain the address
of data storage in another application or in the operating system itself,
either of which would cause the program and perhaps the operating system
itself to terminate or "crash." The JVM makes a number of checks on each
object to ensure integrity.

Java RMI
The Java Remote Method Invocation (RMI) system enables an object
running in one JVM to invoke methods on an object running in another
JVM. RMI provides for remote communication between programs written
in the Java programming language. Objects that are called through RMI
have made their object reference available to client objects. An RMI object
reference is a generic pointer to a server object that is used by the client to
locate and communicate with a server object. A server object may publish

 OBJECT MIDDLEWARE ARCHITECTURES 71

its reference in the RMI registry. An RMI registry maps names to object
references.

Figure 3-7 shows a Java client invoking a Java server that runs in a JVM
on a remote system. The figure also shows that the JVM hides the
heterogeneity of the underlying distributed resource platform. In this case
the DRP consists of a consumer device that runs the QNX operating system
and a server PC that runs the Linux operating system.

Since Java bytecode can execute in any JVM, the RMI system allows
bytecode to be downloaded over the network. This makes it possible to
transfer objects and their behaviour across the network and execute a
program in the vicinity of a client.

Java RMI uses the Java Remote Method Protocol (JRMP) to turn
standard method invocations into remote method invocations. However,
with JRMP both client and server objects must be written in Java. In order
to support remote method invocations between Java objects and CORBA
objects, RMI can also use the IIOP protocol from the OMG to transport
method invocations.

Enterprise Java Beans
Enterprise Java Beans (EJB) is a specification [DYK01] for Java based
distributed object computing. According to the EJB specification an
enterprise bean is a part of a distributed application. In this thesis the term
EJB component refers to an enterprise bean.

An EJB component is a computational object for which attributes,
operations and method implementations have been defined in Java. EJB
applications are distributed applications that consist of EJB components
deployed in an EJB container. A container is the run-time environment of
one or more EJB components.

Figure 3-7 Java
RMI in a distributed
resource platform

RMI

registry

QNX Linux

JVM

Transport network

JVM

Server Client

72 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

The developer of an EJB component is freed from programming
general-purpose services, such as naming, transactions and security. These
services are configured through a deployment descriptor when an EJB
component is deployed in a container. As a result, the developer of an EJB
component, as opposed to a standard Java developer, no longer needs to
write code that handles transactional behaviour, security, connection
pooling or threading.

In essence, EJB is a server component model for Java and was design to
support the development of server-side, scalable applications. It is the first
example of an object middleware that supports a standardised execution
environment for software components. A typical EJB server is shown in
Figure 3-8 and consists of EJB containers, which run within the EJB server,
and infrastructure services for naming, transaction and security. The
container offers a run time environment to the EJB components.

EJB
component

EJB
component

Container

EJB Server

Transactions

Naming

Security

Infrastructure
Services

An EJB server is the run-time environment of one or more containers and
provides services like a raw execution environment, multiprocessing, load-
balancing and device access. It also provides the infrastructure services that
are configured by a container during the deployment of an EJB component.

The EJB containers act as the interface between an EJB component and
the outside world. An EJB client never accesses an EJB component directly.
An EJB component is accessed through container-generated methods that
in turn invoke the components’ methods. The two types of containers are
session containers that may contain transient, non-persistent EJBs whose
states are not saved and entity containers that contain persistent EJBs whose
states are saved between invocations.

EJB clients are the users EJB components. They find the EJB container
that contains the EJB component through the Java Naming and Directory
Interface (JNDI). EJB clients make use of the EJB container to invoke EJB
component methods.

Figure 3-8
Structure of a
typical EJB server

 OBJECT MIDDLEWARE ARCHITECTURES 73

Standardisation
The Java Community Process (JCP) program has been initiated by Sun
Microsystems. It is a process that Sun has formalised in 1998 to develop
and revise Java technology specifications in close collaboration with the
international Java community. This community has over 300 companies
and individuals as members.

The Process Management Office is the group within Sun that overlooks
and manages the daily operations of the program. The actual development
of the specification occurs within the Expert Groups. Members can begin a
Java technology specification by issuing a Java Specification Request (JSR).
The Executive Committee (EC) is the group of members that decides on
the life cycle of a JSR and has the authority to give the final approval to
specifications. Part of the approval process is the availability of a "proof of
concept", or reference implementation of a specification.

3.2.5 Evaluation

In the previous sections, the origin and features of three of today’s most
widespread used object middleware platforms have been outlined. This
section evaluates the features and origins of CORBA, SOAP and J2EE and
how this impacts the choices for the parts of a DPE.

Support for basic facilities
CORBA and the other OMG standards based on the ORB have boosted the
development of object middleware. A CORBA platform supports all the
basic facilities identified in section 3.2.1. But still, a considerable amount of
research effort is put into improving ORB implementations, the
specifications that accompany it and enriching the ORB with functionality
to support components through container technology. EJB technology is on
the forefront of the development of next-generation object middleware that
supports containers and component technology. As such, EJB technology is
a forerunner in the development of CORBA component specifications.

IIOP is the standard protocol that an ORB uses to package and
transport messages. However, IIOP has shown some limitations when used
in conjunction with current firewall technology and as such is not suitable
for cross-organisational message exchange. SOAP does not have this
limitation, since it uses HTTP as the underlying transport protocol and
most firewalls allow unlimited traversal of HTTP traffic. Therefore, the
emergence of SOAP is expected to have an impact on the way messages
between distributed objects are packaged and transported.

SOAP has gained a lot of attention and support from large software
companies such as Microsoft and IBM. Despite some of the simplifications
made to SOAP, such as lack of language mappings and object activation

74 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

schemes, wide use is expected since many middleware vendors include
SOAP support in their products. In particular when information must be
exchanged across the boundaries of organizations, SOAP has the advantage
that it can be carried over the existing Internet infrastructure.
Consequently, no changes have to be made to the security settings of
firewalls in order to exchange SOAP messages between organizations. Inter-
organisational message exchange with other object middleware solutions
requires a large amount of organizational and engineering resources. Since
SOAP builds on existing Internet protocols, organizations are more likely to
choose SOAP over other object middleware solutions for cross-
organisational information exchange.

From a research perspective, SOAP introduces a number of challenges.
SOAP not only uses more network bandwidth, but also parsing and
generating of SOAP messages requires more processing compared to
CORBA or Java RMI. Efficient solutions for parsing and generating SOAP
messages should be investigated. In order to reduce bandwidth
consumption, SOAP engines could, for example, compress messages on the
fly. One could even image SOAP engines that make a dynamic trade-off
between the added processing needed for compression and the reduced
bandwidth consumption.

The J2EE specification is one of the first specifications for component
middleware. It leads the way for object middleware based applications from
an arbitrary set of distributed objects to a set of distributed components.
The main advantage of EJBs over an arbitrary set of distributed objects is
that EJBs require a strict separation between application logic and the
deployment configuration of the EJB component. Application programmers
do not have to consider deployment aspects such as naming, security and
transactional properties.

EJB containers offer a standardised execution environment for EJB
components, which separates the deployment configuration from the
functional behaviour. The EJB specification is taken as an input to the
development of other component execution environments. For example,
the CORBA component model (CCM) is an OMG specification under
development that is a strict super set of the EJB specification. The CCM
enables the deployment of components written not only in the Java
programming language, but also written in other languages supported by
the CORBA language mappings, such as C++ and Smalltalk.

From a research perspective it is interesting to consider the QoS offered
by a component as a deployment property. This requires that component
containers expose the proper interfaces for configuring the QoS offered by
a component. Clients should have a way to discover the offered QoS and
establish some agreement with a container about the QoS they can expect

 OBJECT MIDDLEWARE ARCHITECTURES 75

from a component. In addition, containers should have the mechanisms for
enforcing the QoS agreements with clients.

Impact of standardisation efforts
The OMG coordinates the development of standards for object middleware
and component based software design. Through its liaison with other
consortia and standardisation bodies, some of its key specifications have
become internationally accepted, beyond the OMG. For example, the
OMG IDL and MOF specifications are accepted as ISO standards.

The ISO/IEC standards of most interest for this thesis are ones that
define the Reference Model for Open Distributed Processing. The role of
ISO is to establish dejure standards for open distributed systems, which
include standards for the middleware, the computing systems and the
transport network. ISO standards do not require a reference
implementation.

Although the OMG does not produce implementations of its standards
either, the standardisation process is designed in such a way that
commercial implementations must be available before a specification is
considered as a formal standard. In addition, a growing number of research
effort is directed towards building (open source) implementations of OMG
specifications [ORBacus, JacORB].

CORBA, the CORBA services and CORBA facilities have had an
enormous impact on the advancements of object middleware architectures
for the past decade. The OMG has managed to create a process that attracts
many experts to devote their time and energy to the development of object
middleware. As a result, a set of mature and widely supported specifications
have been produced. The many commercial and open source
implementations prove that these specifications lead to feasible
implementations. Some research groups are specialised in finding
bottlenecks for CORBA implementations [TuBu01] and have proposed
optimisations [SGHP97]. This has lead to scalable and high-performance
implementations. Other groups focus on testing and comparing the
performance of several commercial and research implementations
[CORBAComparisonProject].

However, despite the efforts on the continuous improvements of the
specifications and the availability of many ORB implementations, CORBA
may not become the ubiquitous middleware solution as some OMG
members would have expected or hoped. Several middleware solutions are
already in use for existing applications and companies find no reason to
migrate their legacy to CORBA. Furthermore, the commercial interests of
large companies such as Sun Microsystems and Microsoft are to keep or
expand their portion of the middleware market and therefore promote
their products aggressively. Finally, the growing interest in web technologies

76 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

such as XML and HTTP offers an alternative to CORBA technologies. XML
is considered a very flexible way to represent information and HTTP is one
of the most widely used protocols for conveying information. It can even be
argued that executives are more familiar with web technologies and
therefore XML and HTTP are more easily accepted than OMG IDL and
CORBA.

The W3C has recently gained a lot of attention with the eXtensible
Markup Language (XML) standard. XML is broadly accepted as a standard
for structuring text documents. A growing number of application
components use XML to exchange information. The SOAP standard defines
how messages are packaged as an XML structure and how these messages
are transported over the network. The W3C produces recommendations
that advance XML, SOAP and related standards. That makes W3C also a
player that impacts the structure of a DPE.

The SUN-JCP program concentrates on Java technology specifications
and does not consider other programming languages or run-time
environments, therefore, it can move relatively fast compared to the OMG
process. The OMG also considers programming languages and run-time
environments other than Java and delivers specifications that are
programming language neutral.

The Java Specification Requests cover a wide range of topics, including
specifications of Java interfaces to XML documents, SOAP and a Java
specific version of the Meta Object Facility (MOF). As such, the JCP has an
impact on the advancement of Java-based middleware. Through close
collaboration with the OMG and participation of JCP members in the
OMG process, some of the specifications developed in the JCP program
have been leveraged to a programming language-neutral OMG specification.
For example, the Enterprise Java Beans (EJB) specification has formed an
important starting point for developing the CORBA Component Model
specification.

3.3 Network technologies

The transport network forms an important part of the Distributed
Resource Platform. A network consists of connected network nodes (e.g.,
routers and switches). This section discusses the developments in network
technology, with a focus on the mechanisms and protocols implemented in
the network nodes that can be employed for the control of network level
QoS of Internet Protocol (IP) networks.

As the processing capacities of end nodes (e.g., PCs and workstations)
rapidly improve and the amount of data flowing through the network is ever
increasing, it becomes important that the utilisation of network resources

 NETWORK TECHNOLOGIES 77

can be managed and controlled. With QoS awareness in packet-based
networks we mean that the network nodes have the ability to influence the
performance of the network. A QoS aware network consists of nodes that
implement suitable QoS mechanisms. Network performance is defined as a
set of QoS characteristics offered by the network and is expressed in terms
of bandwidth, delay, jitter and/or throughput.

We first describe the basic QoS mechanisms and then give an overview
of current research activities on the main standards and research efforts.

3.3.1 Basic mechanisms for QoS in packet networks

QoS in packet networks is mainly driven by the need to provide QoS
differentiation to various users and/or applications. For example, a video
distribution application may have stringent requirements on delay variance
(i.e., jitter) of the packets that are transported between a video source and
sink, but may permit a certain percentage of packet loss. However, a file
transfer application may require that no packets are lost, but allows for
significant delays and jitter. These are two examples of applications that use
the same network, but have different QoS requirements. To create this QoS
differentiation, the network nodes need to manage a number of resources.
For the management of resources a number of mechanisms are available.

The most important resources that routers in packet networks need to
manage for service differentiation are buffers and bandwidth.
Corresponding mechanisms are buffer management schemes and
scheduling mechanisms, respectively [GuPe99, WOS00]. Buffer
management schemes decide which incoming packets are queued for
transmission and which packets are discarded, while scheduling
mechanisms decide when outgoing packets are transmitted.

Figure 3-9 depicts a model of a router. Packets arrive at the incoming
network interface and leave the router at the outgoing network interface.
Internally the packets are stored in one of the queues according to some
buffer management scheme. A scheduler, servicing each queue, determines
when packets are forwarded to the outgoing network interface according to
some scheduling mechanism.

Queue

Router

N
et

wo
rk

In

te
rf

ac
e

Queue

N
et

wo
rk

In

te
rf

ac
e Scheduler

Scheduler

In Out

Figure 3-9 A model
of a router

78 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

The combination of the scheduling mechanism and the buffer management
scheme determine the QoS perceived by a particular dataflow. For
example, a more frequent scheduling of packets from a flow increases the
bandwidth for that flow, whereas the buffer size and buffer management
determine the delay and jitter (i.e., delay variance). The research
community has proposed several buffer management schemes, such as Class
Based Queuing (CBQ) [FlJa95] and Weighted Fairness Queueing [DKS90,
Pa92]. For each management scheme a trade-off exists between fairness
(i.e., all flows get a fair share of the resources), efficiency (i.e., storage
capacity requirements are within reasonable limits) and complexity (i.e.,
determination where a packet is stored scales well with the number of
flows).

At the network layer, we distinguish between a control plane and a data
transfer plane (see Figure 3-10). The data transfer plane is sometimes
referred to as the data path, or the fast path. Packets travelling through the
network can thus be classified as signalling packets (i.e., control packets) or
as application packets (i.e. data packets). If network nodes assign
application packets to dedicated buffers and associated schedulers, the
network can distinguish between premium traffic and best-effort traffic.
The signalling messages are used to exchange resource reservations or
traffic policies between network nodes. The network node maps the
resource reservations or traffic policies to the appropriate buffer
management schemes and schedulers. Figure 3-10 shows a network node
processing signalling, premium and best-effort traffic. The control plane
processes and forwards signalling packets, while the data transfer plane
processes two classes of application packets: premium and best-effort
packets.

 Control plane

Data transfer plane

Signaling messages
Premium traffic
Best-effort

Flow direction

Examples of control plane protocols are RSVP and Boomerang. These
protocols are described in the next two sections.

Figure 3-10
Control and data
transfer plane
packets at a
network node

 NETWORK TECHNOLOGIES 79

3.3.2 RSVP

The Resource reSerVation Protocol (RSVP) is a network-control protocol
that enables applications to obtain an agreed QoS for their data flows. RSVP
is not a routing protocol; instead, it works in conjunction with routing
protocols and installs the equivalent of dynamic access control lists along
the routes that routing protocols calculate. These access control lists
determine which packets are treated as premium traffic and which packets
are treated as best-effort traffic.

In RSVP, a data flow is a sequence of packets that have the same source,
destination (one or more), and quality of service. QoS requirements, such
as average and peek packet arrival rates, are communicated through a
network using flow specifications. A flow specification is carried through the
network as the payload of a signalling packet.

RSVP data flows are generally characterized by sessions, over which data
packets flow. A session is a set of data flows with the same unicast or
multicast destination, and RSVP treats each session independently. RSVP
supports both unicast and multicast sessions (where a session is some
number of senders talking to some number of receivers), whereas a flow
always originates from a single sender. Data packets in a particular session
are directed to the same IP destination address or a generalized destination
port. The IP destination address can be the group address for multicast
delivery or the unicast address of a single receiver.

Packet
Classifier

Packet
Scheduler

Data

RSVP
daemon

Policy
Control

Admission
Control

Determines the
route and the

QoS class
for each packet

Packets are queued and
prioritised

as necessary in a packet
scheduler that allocates

resources for transmission on a
particular link

Figure 3-11 RSVP
functions

80 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

RSVP in operation
Figure 3-11 depicts the key functions of RSVP. The RSVP resource-
reservation process begins when an RSVP daemon consults the local routing
protocol(s) to obtain routes. Each router that is capable of participating in
resource reservation passes incoming data packets to a packet classifier and
then queues them as necessary in a packet scheduler. The RSVP packet
classifier determines the route and QoS class for each packet. The RSVP
scheduler allocates resources for transmission on the data path.

3.3.3 Boomerang

Boomerang [Fe99] is a recent development from Telia Research and
Budapest University of Technology. Boomerang is a lightweight signalling
protocol for IP networks that can be used to signal per micro-flow
requirements to the network and to reserve resources end-to-end.

The boomerang protocol offers similar network control features as
RSVP, however it aims to overcome the following limitations:
1. RSVP relies on per micro-flow state that results in a scalability problem

in terms of memory, capacity and processing time.
2. RSVP is complex to implement both in nodes and hosts due to

separation of reservation and path finding messages and receiver
diversity.

3. RSVP requires modification in the far end host (i.e., the destination
host of a micro-flow).

4. RSVP spreads the signalling processing over the network. Each node
along a reserved path contains a flow state and a signalling state.
Therefore, each reservation session increases the load on network
nodes.

5. RSVP requires multiple interactions between sender and receiver for a
successful reservation setup.

Boomerang uses a single signalling message to set-up a bidirectional
softstate reservation of resources in the network. The signalling messages
are wrapped inside an ICMP ECHO message. This design decision
eliminates the need for modification of the far-end host and makes it
possible to reserve resources in both directions in a single signalling loop.

Boomerang in operation
The Boomerang resource-reservation process begins when an initiating
node sends a boomerang message to a far-end node, containing the
requested upstream and downstream bit rates. The far-end node echoes the
message back to the initiating node. This is depicted in Figure 3-12.The

 NETWORK TECHNOLOGIES 81

boomerang message allocates resources along the route, which is
determined by standard routing protocols.

The initiating node is responsible for handling the flow-state of an
established reservation. Therefore refresh messages are sent out periodically
to keep the reservation alive and possibly adapt to route changes.

3.3.4 DiffServ

RSVP and Boomerang are examples of protocols for network performance
control, which belong to the framework of Integrated Services (IntServ).

The main issue with IntServ is the need to maintain state information at
every node for every flow. In addition, the classifier of an IntServ router
needs to inspect multiple fields of the header of each data packet. To
reduce the state and to simplify the classification function, the
Differentiated Services (DiffServ) framework uses the technique of packet
marking. Each packet is marked with a flag indicating how to treat it. This
field is called the Differentiated Service Code Point (DSCP).

The DSCP is used to select the per-hop behaviour (PHB) that a packet
experiences at each DiffServ router along a route. A PHB determines how a
packet is forwarded, such as the relative weight for sharing bandwidth or a
relative priority for dropping. The mapping of a DSCP to a PHB at each
router is not fixed.

When a packet enters a domain of DiffServ routers its DSCP field is
marked according to the service quality a packet is entitled to receive.
Within the domain of DiffServ routers each router only needs to look at the
DSCP to decide how to treat a packet. Routers do not have to maintain per
flow state or use a complex classification function. The complexity of
deciding what DSCP to assign to a packet is pushed to the edge routers of a
DiffServ domain.

Figure 3-12
Boomerang in
operation Lightweight Signaling

wrapped into a PING message
Lightweight Signaling
wrapped into a PING message

Initiating Node Far-End Node

82 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

Interworking between DiffServ and IntServ
The separation of functions performed at the edge of the network from the
functions performed by core routers, is vital for the scalability of DiffServ.
On the other hand, DiffServ does not allow applications to specify the end-
to-end QoS of a particular network flow. However, for a DPE the end
systems could benefit from the ability to specify the expected network QoS
on a per-flow basis. Some have suggested the integration of DiffServ and
IntServ solutions [RCV98, De+99]. The main idea of this integration is
that DiffServ technology is used in the backbone, where as IntServ
technology is used to access the DiffServ domain. Figure 3-13 shows how
end systems access the DiffServ domain through an IntServ network. Key to
the design of such integration is the mapping of IntServ reservations to
marking of packets with DSCP values at the edge routers.

DiffServ domain IntServ
domain

IntServ
domain

Edge
router

Edge
router

SLA SLA

3.3.5 Evaluation

The network performance protocols and standards discussed in the
previous sections can be used to realise performance support at the
middleware layer. They provide a means for the middleware to control the
performance characteristics offered by the network.

The RSVP protocol was designed to reserve network bandwidth from a
single source to multiple receivers, but can also be used to establish point-
point reservations. However, in an object middleware context, two point-
point reservations must be made to support a single client-server
association in order to carry both request and reply messages over a
reserved communication channel. RSVP has considerable overhead in terms
of control messages needed to create a network reservation.

Boomerang was designed to reduce the number and size of control
messages compared to RSVP. In addition, it can create a bi-directional
reservation from source to sink in a single reservation request. This
reservation can be asymmetric in order to facilitate different upstream and
downstream reservations.

Boomerang seems more suitable for application in an object middleware
context, however it is still in a research phase and it is not as widely
supported in routers and computers as RSVP.

Figure 3-13 IntServ
access to a
DiffServ domain

 QOS ARCHITECTURES 83

RSVP and Boomerang require each node along the path of a flow to
maintain per-flow state information. This is typical for any IntServ
approach to network QoS. The IntServ approach is complemented with the
DiffServ approach. Most of the scalability drawbacks of IntServ have been
resolved in the DiffServ approach. A combined solution of IntServ and
DiffServ seems a feasible way to realise end-to-end QoS in a large scale
packet network.

3.4 QoS architectures

The notion of QoS is broad and is applied to many areas, such as end-
user quality perception, ergonomic quality of user interfaces, network
performance, system performance. This section gives an overview of the
terminology used in this thesis to express the QoS aspects of a DPE. Other
QoS aspects such as user needs, customer satisfaction or price/quality ratios
are not considered in this thesis.

A number of QoS definitions are presented, and then the concepts of a
QoS framework derived from an ISO/IEC standard are described.

3.4.1 QoS definitions

Several definitions of QoS can be found in standards and literature. The
following table quotes some of these definitions:

Origin Definition
ISO/IEC (X.641) /
ITU/T 13236

QoS is a set of qualities related to the collective
behaviour of one or more objects [ISO X.641].

ISO 8402 Quality: the totality of features and characteristics of a
product or services that bear on its ability to satisfy
stated or implied needs [ISO8402].

QOSMIC QoS is a set of user-perceivable attributes, which
describe a service the way it is perceived. It is
expressed in a user-understandable language and
manifests itself as a number of parameters, all of which
have either subjective or objective values. Objective
values are defined and measured in terms of
parameters appropriate to the particular service
concerned, and which are customer-verifiable.
Subjective values are defined and estimated by the
provider in terms of the opinion of the customers of the
service, collected by means of user surveys [Me91,
Me92].

Table 3-1
Examples of QoS
definitions

84 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

ISO/IEC (X.902) /
ITU/T 10746-2

The notion QoS is a system or object property, and
consists of "a set of quality requirements on the
collective behaviour of one or more objects... QoS is
concerned with such characteristics as the rate of
information transfer, the latency, the probability of a
communication being disrupted, the probability of
system failure, the probability of storage failure, etc."
[ODP2]

Tutorial "The
Enterprise of QoS"

The notion quality of service is defined by its purpose
(objective), scope and policies applied. So, the "purpose
of QoS" is to guarantee contracted quality throughout
the use of a service to a community of agents or
objects. A QoS contract defines agreement by
specifying requirements and obligations for a
community that is involved in the service application. A
QoS contract also specifies the policies to keep track
about QoS during all phases of application. These
policies constrain the activities about QoS that are
undertaken by the community objects, i.e., the
enterprise, to achieve the system objectives [MeHa98]

3.4.2 QoS terminology

The terminology with respect to QoS used in this thesis is based on
concepts of ISO/ITU QoS framework [X.641]. The QoS concepts and
definitions that are introduced comprise a framework for modelling the
QoS aspects of an open distributed system.

The framework considers a service user and a service provider who
describe QoS aspects by QoS requirements, characteristics, management
functions, categories, mechanisms, activities and phases. For example, user
requirements are conveyed as parameters to the service provider. The
service provider is able to determine management functions according to
the requested characteristics or categories of QoS. The management
functions comprise components of appropriate mechanisms. The
application of mechanisms occurs as activities in a behavioural specification
and will be controlled during pre-defined QoS phases.

Figure 3-14shows a graphical representation of the relationship between
user requirements, QoS characteristics, QoS categories, QoS management
functions, and QoS mechanisms for the service user and the service
provider to support QoS. In Chapter 5 we elaborate on these definitions.

The main purpose of Figure 3-14 is to show the concepts (a, b, c, d, e
and f) concerning the QoS provisioning process:

a) A service user expresses its User requirements independent of the
way a service provider realises these requirements. User
requirements are conveyed to the provider as QoS parameters.

 QOS ARCHITECTURES 85

b) The QoS parameters are expressed in terms of the QoS
characteristics that a service provider supports.

c) A QoS category describes one or more QoS characteristics.
d) The QoS management functions of a service provider affect the QoS

characteristics that a service provider supports. Conversely, the
QoS characteristics determine which QoS management functions a
service provider employs to provide QoS support. A QoS
management function is comprised of one or more QoS mechanisms.

e) A QoS mechanism applies one or more QoS activities
f) QoS activities are partitioned into QoS phases.

Se
rv

ic
e

U
se

r
Se

rv
ic

e
Pr

ov
id

er

QoS characteristics (b) QoS management
functions (d)

QoS category (c)

User requirements (a)

describe

(capacity, time-delay,
accuracy, etc…)

determine

affects

QoS activities (e)

QoS phases (f)

partitioned into

comprise

QoS requirements
conveyed to provider as
QoS parameters

applied
b

QoS
mechanisms

3.4.3 Utilisation

The QoS user-provider relationship is applied three times in this thesis.
First a QoS user-provider relation is identified to model the relation
between an application component (as user) and the DPE (as provider),
and then a QoS user-provider relation is identified between the middleware
(as user) and the DRP (as provider). The third QoS user-provider relation
is identified between a computational client object (as user) and a
computational server object (as provider).

Figure 3-14
Concepts of the
QoS framework

86 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

Chapter 5 further applies the QoS user-provider relationship to the
construction of QoS models for open distributed systems.

3.5 Software engineering technologies

The QoS aware DPE offers support for interactions between computational
objects that are implemented for a possibly heterogeneous set of distributed
resources. Ideally, the structure and behaviour of these components should
be modelled in an implementation language independent way. This eases
the portability of collaborating computational objects in a heterogeneous
distributed resource platform. Therefore, several software companies have
specified meta-models [OMG-CWM, EDOC] that are used to develop
models of software.

The various meta-models that are used to develop models that specify
(parts of) the DPE has led to the need for a generic and standardised
framework for the management, manipulation and exchange of these
models. The OMG has addressed this need with the specification of the
Meta-Object-Facility (MOF) [MOF]).

This section presents a brief overview of the current status of Unified
Modelling Language (UML) [UML], which is a modelling language that is
used to develop models of software. The widely adopted UML has enabled
the standardisation of the MOF, which is also described in this section.

3.5.1 UML overview

The UML is a graphic language for specifying, visualising and
constructing artefacts of a software system [Ko99]. The first version of the
language was published in 1996 when the modelling languages found in the
Booch, OOSE/Jacobson and OMT methods where combined. The
combination of the three modelling languages into a single language
resulted in UML 0.9. Since 1997 the further development of the UML has
become subject to the OMG process. Already several new versions of UML
have been standardised and more revisions are expected to pass through the
OMG process. Each revision extends or refines the syntax and semantics of
the UML.

The basic building blocks of the UML are model elements, relationships
and diagrams. The model elements include e.g., classes, interfaces,
components and use-cases. Examples of relationships are associations,
generalisations and dependencies. The diagrams of the UML are used to
express various views on a software system. Diagrams can be class diagrams,
use case diagrams, interaction diagrams and others. The building blocks of

 SOFTWARE ENGINEERING TECHNOLOGIES 87

the UML can be used to construct large, complex structures that describe
the blueprint of a software system.

The UML specification defines syntax and the semantics of the UML.
The syntax definition includes the UML notation guide, which also defines
the graphical notation for UML building blocks. The UML can be extended
through the definition of a UML Profile. A profile does not introduce new
basic concepts, but provides a way to specialise the UML for a particular
environment or domain. A UML profile associates specific semantics with
the UML basic building blocks.

3.5.2 The Meta-Object Facility

The MOF is a generic framework for describing and representing meta-
data. Meta-data in this context denotes any data that in some sense
describes other data. Although the MOF supports any kind of meta-data it
is particularly suited for handling data that represents a model. A model in
the MOF context refers to a collection of meta-data that describes a
collection of related data. In the context of MOF, the model of a collection
of related data is regarded as the meta-data of this collection of data. As a
result, a MOF (meta-) model is an abstract language that can express this
collection of data.

Modelling data recursively as meta-data leads to a potential infinite
number of meta-levels. The architecture of MOF defines four layers of
meta-modelling, that are labelled M0, M1, M2 and M3:
– Layer M0 - the instances: information (data) that describes a concrete

system at a certain point in time. This layer consists of instances of
elements of the M1-layer.

– Layer M1- the model: definition of the structure and behaviour of a
system using a well defined set of general concepts. An M1-model
consists of M2-layer instances.

– Layer M2 - the meta-model: The definition of the elements and the
structure of a modelling language. An M2-layer model consists of
instances of the M3-layer.

– Layer M3 - the meta-meta-model: The definition of the elements and the
structure for the description of a meta-model.

The meta-meta-model, or M3-layer model, is standardised in the OMG
MOF specification. The M3-layer model is also referred to as the MOF
model and forms the fixed point that unifies MOF compliant models. The 4-
layer MOF structure is depicted in Figure 3-15.

88 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

MOF model M3 layer

Meta-models
(= meta-meta data)

Models
(= meta data)

Instances
(= data)

M2 layer

M1 layer

M0 layer

Elements and structure of the MOF model are directly derived from the
object-oriented formalism. The MOF-model consists of the following
concepts for the definition of meta-models [HKB01]:
– Classes: Classes are first-class modelling constructs. Instances of classes

(at M1-layer) have identity, state and behaviour. The structural features
of classes are attributes, operations and references. Classes can be
organized in a specialisation/generalisation hierarchy.

– Associations: Associations reflect binary relationships between classes.
Instances of associations at the M1-layer are links between class
instances and do not have state or identity. Properties of association
ends may be used to specify the name, the multiplicity or the type of the
association end. MOF distinguishes between aggregate (composite) and
non-aggregate associations.

– Data types: Data types are used to specify types whose values have no
identity. Currently MOF comprises the CORBA data types, i.e., integers
and string, and OMG IDL interface types.

– Packages: The purpose of packages is to organize (modularise, partition
and package) meta-models. Packages may be nested, inherit from other
packages or import components from other packages.

The MOF standard defines a representation of the MOF model (i.e., the
M3 layer) in OMG-IDL. This representation consists of the OMG-IDL
module Model (meta-model specific interfaces) and Reflective (generic
interfaces). All interfaces in Model directly or indirectly inherit from
interfaces defined in Reflective. The MOF interfaces, as defined in the
Model and Reflective, allow to:
– Stepwise create a new meta-model in the MOF by creating new objects,
– Change an existing meta-model in the MOF,

Figure 3-15 The
MOF layers

 SOFTWARE ENGINEERING TECHNOLOGIES 89

– Extract information from a meta-model using query functions and
traversal functions,

– Request a validation of the meta-model.

To produce an external representation of a meta-model (externalise) or to
create a meta-model from an external representation (internalise), the
mapping to an external format must be defined. Currently two specific
mappings from MOF to external formats have been standardised:
– MOF-IDL-mapping: This mapping generates the IDL-specification for a

meta-data service from a MOF-meta-model specification. This service
(e.g., repository) is used to store or manipulate models (M1-layer),
which are conforming to an M2 model. An example for such a service is
the UML CORBAfacility [UML-F] that is derived from the UML-meta-
model.

– XMI (XML based model interchange): This mapping defines rules to
derive an XML Document Type Definition (DTD) [Bo98] from a meta-
model in MOF and to represent an M1-model as an XML document
structured according to that DTD.

The MOF-IDL-mapping enables the automated generation of a meta-data
repository that allows CORBA applications to access meta-data about
application objects at run-time. This meta-data could for example be (a
part of) the design constructed by an application designer. The XMI
specification offers a standardised way to represent meta-data as an XML
document and ensures that MOF-based meta-data can be deployed in a
scope wider than pure CORBA applications. The main purpose of the XMI
mapping is to exchange designs between design tools.

3.5.3 Evaluation

The convergence of modelling languages into the UML has led to the
availability of a set of widely accepted software modelling building blocks.
These building blocks enable a software designer to create a well-supported
description of a software system, which can easily be exchanged with
another designer or integrated other with UML based software designs. The
UML provides a language for describing application components that use
the DPE as an execution environment. In addition, the UML can be used to
specify the design of middleware components.

The MOF further extends the capabilities of the UML. The main
advantage of the MOF-approach is to make the definition of (meta)-models
independent of a concrete domain, and to provide a concise and unique set
of concepts for the definition of meta-models.

90 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

MOF can be employed to define multiple meta-models that are used to
develop models of system. The MOF model is a suitable meta-meta-model
that unifies the meta-models of the modelling concept space defined in
Chapter 2. MOF compliant meta-models and models, specifying various
viewpoints and views of a DPE respectively, are easily manipulated,
managed and exchanged by MOF compliant tools.

MOF enables an approach to the design of a QoS aware DPE where one
or more meta-models are used to define the functional characteristics of a
DPE and one or more other meta-models are used to specify the qualitative
aspects of a DPE.

3.6 Related work

The research area presented in this chapter comprises several subjects as
shown in section 3.1. For each subject several advances and ongoing
research can be reported. However, in this section we limit ourselves to
only discuss research activities that are related to the development of a QoS
aware DPE. The activities discussed are: QML, QuO and Quartz.

3.6.1 QML

The Quality of service Modelling Language (QML) [FrKo98] is a language
for defining QoS specifications for distributed objects. QML originates
from HP Laboratories, Palo Alto. QML is designed to support QoS
specification in a general way, encompassing QoS categories such as
reliability, performance and security.

QML has three main language constructs that are used to construct a
QoS specification:
– Contract type. This specifies the QoS category, such as reliability or

performance. For each QoS category, the contract type defines the QoS
dimensions. A QoS dimension expresses the values that can be used to
express a QoS contract.

– Contract. This defines the constraints on the dimensions of the contract
type.

– Profile. QML uses profiles to associate contracts with interface entities.
QML effectively treats contracts as abstract data types; they can be defined
and reused by name. This allows QML to support inheritance between
contract types. This behaviour is known as refinement. One type of a
refinement on a particular contract consists of the specification of
properties that were not present in the original contract. It is also possible
to create a new contract that inherits the properties of another contract,
but with altered properties.

 RELATED WORK 91

QML also supports conformance between contracts. This allows two
things: a contract P can be said to be stronger or weaker than a contract Q,
and allows a specification that provides P to satisfy one that requires Q,
provided that P is stronger than Q. This relieves developers of making exact
matches between contract types. It is only necessary to find an operation
whose specification is at least as strong as needed.

QML also has a QoS fabric, called QRR, which makes it possible to
manipulate QoS specifications at runtime. It also allows creating new QoS
specifications at runtime. QML however does not prescribe how these
specifications should be enforced by the middleware.

QML offers a basic framework for specifying QoS contracts and contract
types. However, QML does not prescribe any specific QoS categories, QoS
dimensions or QoS contract types. The issue of QoS specification in a way
that reflects the actual requirements of an application domain still remains.
In addition, QoS specifications should be defined in such a way that they
can be supported by the middleware and the appropriate QoS mechanisms
are present to realise a QoS contract.

3.6.2 QuO

Quality Objects (QuO) is a framework for providing quality of service
(QoS) in network-centric distributed applications [PLS+00]. QuO
supports the specification of QoS contracts between clients and service
providers, runtime monitoring of contracts, and adaptation to changing
system conditions. It is developed by BBN Technologies [VZL+98].

The QuO application not only consists of the client program, ORB, and
(target) object, it also has the following components, shown in Figure 3-16,
provided to an application developer:
– A local delegate of the remote object. The delegate provides a functional

interface identical to the remote object, but can trigger contract
evaluation upon each method call and return.

– A QoS contract between the client and (remote) object. This specifies
the level of service desired by the client, the level of service the object
expects to provide, operating regions indicating possible measured QoS,
and actions to take when the level of QoS changes.

– System condition objects (SysCond) interface between the contract and
resources, mechanisms, objects, and ORBs in the system. These are
used to measure and control QoS.

When a client calls a remote method, the call is passed on to the object’s
local delegate. The local delegate then passes the call on to the remote
object. While doing so the delegate is able to record the current system
conditions. The method return will also pass through the local delegate and

92 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

the delegate is so able to evaluate whether the QoS requirements were met
or if it has to take action in order to fulfil the requirements.

At runtime, client and server interact about the level of QoS they can
provide. Callbacks into both the client and server are used to signify that a
change in imminent. The QuO architecture provides objects that define
these callbacks; the developer is responsible for implementing their
behaviour. The delegates, depicted in the figure above, are free to modify
their own behaviour in any way desirable to maintain the systems current
QoS. For example, if the network throughput degrades to such a level that
they may degrade below the QoS specifications, the delegates may choose
to compress the data and thus to trade CPU cycles for throughput.

3.6.3 Quartz

The Quartz QoS architecture aims to solve the lack of flexibility and
expressiveness in QoS specification that can be found in other QoS
architectures. Quartz originates from Trinity College Dublin from the hand
of Frank Siqueira [SiCa00]. Quartz was designed with the following
requirements in mind:
– Users can express QoS according to the notion of quality that is

appropriate at application level.
– Transparency of the characteristics of reservation mechanisms and

platforms present at lower levels.
– Adequacy to open systems, in which different protocols and hardware

co-exist
– Support for dynamic resource adaptation to be performed by the system

without loss of service consistency at application level
The main component of Quartz is a QoS agent. The agent is responsible for
harmonising the capabilities of the lower level protocols and platforms, with

Figure 3-16 A
remote method call
in a QuO
application

 CONCLUSIONS AND FURTHER DIRECTIONS 93

the application level QoS requirements. Several case studies have been
conducted to successfully validate the approach.

3.7 Conclusions and further directions

A DPE is an open distributed system that is constructed from hardware and
software components that are obtained from various vendors and open
source communities. Several forces have an impact on the construction of a
QoS aware DPE. This chapter discusses four research subjects that
influence the technological advancement of a QoS aware DPE. These
research subjects are object middleware architectures, QoS architectures,
network technologies and software engineering technologies.

Standardisation of object middleware platforms is impacted by several
standardisation organisations. This chapter shows the mutual interests and
dependencies of these organisations and how this impacts the
standardisation of object middleware. At least three competing object
middleware standards are evolved and improved by various organisations. It
is not likely that these standards will converge into a unified object
middleware standard, due to (technological) differences in these standards
and the commercial interests of companies that have implemented these
standards.

Vendors that build products based on object middleware standards offer
very similar but nevertheless non-interoperable system parts. As a result,
the market for DPE products is segmented. At this point in time only
assumptions can be made about the products and standards that will be
used by the majority in the long run. Therefore, a design of a QoS aware
DPE has to be generic in the sense that it is applicable to DPE products in
different market segments.

EJB component technology is a leading example of an object
middleware technology that enforces the separation of the functional
behaviour of computational objects from component deployment. It
emphasises the distinction between the role of application designer and
deployment designer. Ideally, this distinction should be further enforced by
a QoS aware object middleware platform. Such a platform should enable a
deployment designer to configure QoS characteristics of software
components at deployment time.

The QoS offered by a middleware platform depends on the QoS offered
by the DRP. To support QoS, object middleware platforms must therefore
control the QoS offered by the DRP. This chapter focuses on the QoS
support offered by a packet network.

Two competing approaches to network QoS provisioning, i.e., IntServ
and DiffServ have been identified. The IntServ approach allows for fine-

94 CHAPTER 3 OVERVIEW OF THE RESEARCH AREA

grained QoS control, but requires each network node to maintain per-flow
state information along the path of a flow. This is not required by the
DiffServ approach at the expense that is allows for course-grained QoS
control.

Analogous to the developments in the area of object middleware
architectures, the developments in the area of network technologies for
QoS support indicate that it is not likely that there will be a unified solution
for the control of network QoS.

New protocols and mechanisms for the control of QoS in packet-based
networks are expected to emerge. Consequently, the QoS control interfaces
and the quality delivered by future networks will change over time.
Therefore, the approach to QoS provisioning should be service driven, i.e.,
QoS support at the DPE level should not reveal the protocols, interfaces
and mechanisms used by the DRP to control the QoS. QoS support for a
DPE should be offered as a generic service that abstracts from underlying
QoS enforcement functions. A service driven approach to QoS provisioning
must be extensible, in the sense that new mechanisms for QoS control can
be incorporated when such mechanisms become available.

In the area of software engineering technologies, the UML represents
the convergence of software modelling languages. The UML supports the
use of multiple viewpoints and associated meta-models, which is in line
with design concepts presented in Chapter 2.

The MOF model is a generic meta-meta-model that suits our need to
construct multiple meta-models. These meta-models constitute a modelling
concept space, which can then be used to develop models of a QoS aware
DPE. In this thesis we use the MOF model in Chapter 5 to develop a QoS
meta-model.

Chapter 4

4. An object middleware reference
model

The purpose of this chapter is to construct an object middleware reference
model. Many similarities can be discovered in the structure of different
object middleware platforms if specific implementation choices are
ignored. In the next chapters the object middleware reference model is
used to introduce QoS awareness into object middleware. Defining support
for QoS in object middleware based on the common structures of a
reference model instead of some specific architecture makes the proposed
solutions more widely applicable.

Our approach to the construction of an object middleware reference
model starts in section 4.1 with a discussion of the supporting role of object
middleware in the design of distributed applications. Our experiences with
the supporting role of object middleware have been reported at several
international conferences and workshops [HNSW99, HTW98, KHSW00,
NiHa99, OlHa98]

To identify the common structures in object middleware platform that
have remained invariant over the past decades, section 4.2 discusses a
number of early middleware platforms and the support these platforms
provide to an application designer. The results of this discussion, the
distribution transparencies identified in Chapter 2 and a review of the
functions and layers of contemporary object middleware platforms, provide
the basis for a list of features that should be supported by middleware that
complies with our reference model. This list of features is presented in
section 4.3 after the layers and functions of contemporary object
middleware platforms are reviewed.

A generic object middleware model is then constructed that complies
with the major object middleware systems. Sections 4.4 to 4.6 present the
object communication middleware, general purpose services and the

96 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

component execution environment, respectively. These are the main parts
of our object middleware reference model.

Finally, section 4.7 assesses the compliance of our object middleware
reference model with current object middleware technologies and presents
the conclusions of this chapter.

4.1 Object middleware as a supporting infrastructure

This section discusses the role of object middleware in the design of
distributed applications. The discussion starts with a generic approach to
distributed system design, using generic design principles such as
refinement and abstraction. This approach is then applied to the design of a
distributed system, without consideration of object middleware, i.e.,
considering the design of a distributed system from scratch. Then we
consider the use of object middleware and how distributed system design
benefits from object middleware.

The objective of this section is to investigate the need for a supporting
generic infrastructure, independent of a specific distributed application.
Current object middleware platforms are examples of such supporting
generic infrastructures.

4.1.1 Structured distributed system design

Chapter 2 introduces the notions of abstraction, refinement and
decomposition. Abstraction and refinement are there positioned as
opposite design steps. Decomposition is defined as a special case of
refinement, which concerns the refinement of parts of a design into
subparts. This section applies these structured design principles to the
design of a distributed system using objects as basic modelling entities.

Figure 4-1 shows two approaches to distributed system design. In a
strict top-down design process, a distributed system is refined in a sequence
of decomposition steps. Decomposition enables a designer to model a
system part at a more fine-grained level. The decomposition stops when an
object in the design is available in software or hardware.

In a strict bottom-up process, a distributed system is composed in a
sequence of abstraction steps. Abstraction enables a designer to model a
system part at a more coarse-grained level that hides the implementation of
that part. The composition stops when one or more coarse-grained objects,
which represent the system in an integrated way, model the distributed
system.

 OBJECT MIDDLEWARE AS A SUPPORTING INFRASTRUCTURE 97

Integrated view of a
distributed system

Decomposition Abstraction

Decomposition Abstraction

T
op

 d
ow

n
de

si
gn

 p
ro

ce
ss

Bo
tt

om
 u

p
de

si
gn

 p
ro

ce
ss

In practise, a distributed system is designed using a combination of top-
down steps and bottom-up steps. A designer aims to balance the design
process by constructing a model from objects that represent entities that
are available in the implementation concept space. Availability of an
implementation of an object in the implementation concept space is a
reason to stop the further decomposition of this object. Another reason to
stop the decomposition of an object is that the implementation of that
object is automated using transformation rules. Figure 4-2 shows how a
model and its implementation are related.

Figure 4-1
Decomposition and
abstraction applied
to distributed
system design

98 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

C++
object

Implementation concept space

C++
object

C++
object

Generated using transformation
rules

Models of C++
library entities

Modelling concept space

C++ library

The observation is that decomposition by a designer should stop when
either the parts of a model are readily available in the implementation
concept space, or when the parts of a model can be generated using a set of
transformation rules.

For example, a designer of a shared whiteboard application models a
communication library as a set of objects that can establish bi-directional
reliable connections between two end-points. A suitable design pattern that
represents this functionality of the communication library model is the
Acceptor/Connector pattern [Sc97]. During the top-down design of the
whiteboard application, the designer ensures that at some level of
decomposition Acceptor and Connector objects appear. The transformation
of the Acceptor/Connector objects to the implementation concept space
becomes trivial; therefore no further decomposition of these objects is
necessary.

4.1.2 Distributed system design without object middleware

Now consider the design of a distributed system, in case there is no object
middleware available and a distributed system must be designed from
scratch. As already identified in chapter 2, several roles can be distinguished
that are involved in the design of the distributed system. The application
designer designs a distributed application under the assumption that there
is an infrastructure that provides supporting functions to the application
objects. An application designer models this infrastructure in at a high level
of abstraction, leaving the refinement of the infrastructure to the
infrastructure designer.

The application designer uses the computational viewpoint to construct
a specification of a distributed application and provides the infrastructure
designer with a set of requirements that the supporting infrastructure

Figure 4-2 Applying
transformation rules
to relate a model
with its
implementation

 OBJECT MIDDLEWARE AS A SUPPORTING INFRASTRUCTURE 99

should meet. The infrastructure designer then takes this set of requirements
and specifies an infrastructure that meets these requirements.

An infrastructure designer uses the computational viewpoint, the
engineering viewpoint or both, to create the infrastructure design. The
suitability of a viewpoint for the design of the infrastructure depends on
which part of the infrastructure is designed and what requirements are met
by that part.

The modelling entities of a computational design and an engineering
design are related through correspondence relations. For example, a
computational object corresponds to a BEO, an interface of a BEO
corresponds to an interface of a computational object and the binding
between two computational objects corresponds to a set of engineering
objects. Figure 4-3 shows an example of two related views.

CO 1 CO 2

BEO 1 BEO 2

Correspondence relation

Binding

Engineering objects
that realise a binding

Co
m

pu
ta

ti
on

al

vi
ew

En

gi
ne

er
in

g
vi

ew

The correspondence relation gives an infrastructure designer the choice to
model parts of the infrastructure as computational objects and to map this
specification to an engineering specification, according to the
correspondence relations.

The deployment designer then takes the specifications of the application
and infrastructure designers and packages the classes found in these
specifications into components. This results in two types of components:
infrastructure components and application components.

Figure 4-3 Related
computational and
engineering
designs

100 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

Infrastructure and application components are mapped to the
implementation concept space using transformation rules.

4.1.3 Distributed system design with object middleware

In practice, the implementation of infrastructure components can be
obtained from a vendor. Deployment of these infrastructure components
on a set of nodes provides a distributed application with an object
middleware layer.

According to the deployment view, a distributed system consists of
application components that are deployed on a run-time environment.
Internally, the run-time environment consists of Native Computing and
Communication Environment (NCCE) and an infrastructure component. A
node hosts the run-time environment and one or more application
components. Nodes are interconnected through a transport network.
Figure 4-4 shows a distributed system that consists of node A and B, which
are connected through a transport network. Each node hosts a run-time
environment and one application component.

Node B

Infrastructure
Component

NCCE

Transport network

Interoperability
reference points

IRP A IRP B

Portability
reference points

Node A

PRP A PRP B

Application
Component A

Application
Component B

Run-time environment A

Run-time environment B

Infrastructure
Component

NCCE

Since run-time environments can be obtained from different vendors,
collaboration between run-time components and application components
must be standardised. Therefore, a run-time environment has two
reference points to which an implementation of the run-time environment
should conform to offer portability and interoperability. The first reference
point concerns the portability of application components; the second
reference point concerns the interoperability of application components.
The interoperability and portability reference points in Figure 4-4 are
labelled IRP and PRP respectively.

Portability means that the run-time environment can be adapted to a
variety of configurations, while a single application component can still be
deployed on these various configurations. For example, a run-time

Figure 4-4
Deployment view of
a distributed
system

 INFLUENCES FROM EARLY MIDDLEWARE PLATFORMS 101

environment may vary over vendor, internal design or implementation
language. Compliance to a portability reference point means that
application components are agnostic to these variations.

Interoperability is the ability of two or more run-time environments to
communicate and co-operate despite a variety of configurations. The
variation in the configuration of a run-time environment concerns
variations over internal design, vendor or implementation language.

4.2 Influences from early middleware platforms

This section presents some early middleware systems that have influenced
the middleware systems of today. Some of these systems may not have been
considered middleware at the time they were designed. However, today we
categorise them as middleware systems as they provide a supporting
infrastructure to an application designer. We discuss remote procedure
calls (RPC), the V distributed system, ANSAware and OSF DCE. In fact,
experience and knowledge gained from the design of these systems has been
incorporated into current object middleware systems.

4.2.1 Remote procedure calls

The basic idea of an RPC is to extend the use of a procedure call to a
distributed environment [BiNe84]. Most RPC systems aim to make the
semantics of an RPC as close as possible to a local procedure call. RPC
systems are concerned with binding, heterogeneity, call semantics and
concurrency.

A local function call must by bound to a remote function. Binding can
take place at design time, compile time or at run-time. The RPC system
must ensure that the binding between a local function and a remote
function is type safe to guarantee the integrity of the function call.

The RPC system is responsible to shield applications from heterogeneity
aspects such as the use of multiple programming languages for procedure
implementation, differences in byte-order due to different processor
architectures and the use of various network protocols. A technique that
RPC systems use to deal with heterogeneity is the use of stubs. A stub is a
local program module that represents the remote procedure and shields an
application from the mechanisms needed to use a remote procedure.

An RPC offers the semantics nearly identical to a local call. The only
difference between the semantics of a local call and an RPC is the presence
of network failures. An RPC system gives some degree of failure protection,
by transparently re-issuing an RPC in case of a network failure. In case

102 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

re-issuing leads to multiple calls at the remote site, the RPC system
suppresses duplicate calls and thus guarantees zero-or-one semantics. This
is also referred to as at-most-once semantics. In addition, the RPC system
maintains the call-by-value or call-by-reference semantics of the parameters
of an RPC.

Finally, the RPC system manages concurrency aspects of an RPC. An
RPC may be initiated concurrently from multiple threads. The order of
RPC handling cannot be guaranteed. However, a calling thread is blocked
until the RPC has completed.

4.2.2 The V distributed system

The V distributed system [Ch88] is a distributed operating system, designed
for a cluster of workstations connected by a network. The system is
structured as a small distributed kernel, a set of service modules, various
run-time libraries and a set of commands. The kernel is distributed, i.e.,
each workstation executes a separate instance, but these kernel instances
collaborate to offer a single abstraction of processes and associated address
spaces.

The kernel provides a software backplane, to plugin software modules
that can use the communication facilities provided by the kernel. The V
distributed system is defined in terms of protocols and not in terms of
predefined software specifications. Any network node that implements the
system protocols can participate, independent of the internal software
architecture.

High performance communication is considered the most critical facility
of the V distributed system. A significant research effort has been spent on
finding optimisations for interprocess communication (IPC). This has
resulted in four contributions to an efficient interprocess communication
system:
1. The kernel handles sending a request message and receiving a response

message in a single send primitive. An application issues a request and
then waits for the response to return, before it can continue processing.
This reduces scheduling overhead and simplifies buffering.

2. Messages have a fixed size of 32 bytes with an optional and variable size
data segment. Most messages fit into the fixed part of the message
structure. The kernel interface, kernel buffering and network
transmission have been optimised for this message size.

3. The VMTP transport protocol is used, which is optimised for exchange
of request and response messages. The protocol has no explicit
connection setup and teardown. Communication state for a client is
established upon receiving the first request from that client. Duplicate
messages are suppressed. The header of a VMTP message includes a

 INFLUENCES FROM EARLY MIDDLEWARE PLATFORMS 103

short fixed-sized message, thus supports efficient handling of small
messages.

4. Every process descriptor contains a template VMTP header. Using this
header, the overhead of creating a message as part of a send primitive is
significantly reduced.

On top of the IPC system, a number of kernel services for time, process,
memory, name and device management have been realised. These kernel
services provide the basic framework for the realisation of various non-
kernel services. These services include a pipe-server (implementing Unix-
like pipes), an Internet server (implementing TCP/IP), a file server and a
display server.

One of the lessons learned from the V distributed system, is that
research should first focus on the design of protocols and interfaces of the
parts of a distributed system. After the design meets the performance,
reliability, security and functional requirements, the design should be
converted to high-quality software [Ch88].

4.2.3 ANSAware

The Advanced Networked Systems Architecture (ANSA) advocates a
common approach to distributed system design. The ANSA project has
developed a set of common design principles. These design principles are
categorised into concepts for describing distributed systems, design rules
and implementation concepts.

Fundamental to the ANSA approach is the use of viewpoints. The
enterprise, information, computational, engineering and technology
viewpoints, as found today in the RM-ODP standards were developed in
conjunction with the ANSA project.

ANSAware is the distributed application-programming environment
produced by the ANSA project. It offers an abstract machine for the
execution of the computational concepts of ANSA. These computational
concepts do not require a new programming language, but are simply a set
of constraints on a program, necessary to enable distribution. ANSAware
programs are written using a standard programming language with
embedded statements for (remote) interactions with other programs. These
embedded statements are written in the Distributed Programming
Language (DPL).

ANSAware has resolved a number of problems and simplifies the design
of a distributed system. The issues resolved by ANSAware are (1) a language
for the specification of interfaces, (2) automatic target language mapping,
(3) late binding between client and server programs, (4) separation of

104 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

object and interface and (5) additional infrastructure services. Each issue is
discussed in the sequel.

The ANSA Interface Definition Language (ANSA IDL) enables the
designer of a distributed application to define the permitted types of
interactions and the type of the data that can be included in these
interactions. An ANSA IDL specification is similar to the specification of a
set of operations for an interface of an object. ANSA IDL uses exceptions to
deal with the failures due to distribution, such as network or remote host
failure.

The mapping of ANSA programs to a target language is automated.
Stubs are generated from an ANSA IDL specification. A pre-processor
scans the source code to find DPL statements and converts these statements
to code that calls the stub functions. Automated target language mapping
enables distributed applications to be written in various programming
languages.

The binding between a client program and a server program is
established at run-time. A client program has no static reference to a server
program and can obtain a reference just before it calls the server. This late
binding enables a flexible deployment of ANSAware programs.

Objects are strictly separated from interfaces. An interface is considered
to be a unit of structuring, whereas an object is a unit of distribution. An
object can have multiple interfaces.

The run-time support offered to ANSAware programs is augmented
with the trading service. The trading service is an infrastructure service,
designed and implemented as an ANSAware application. The service
enables server programs to export a reference to an interface to the trader.
Client programs can then discover this interface reference based on some
properties.

4.2.4 OSF DCE

The Distributed Computing Environment (DCE) is a standard from the
Open Software Foundation (OSF). The OSF is an independent group for
the support of the IT industry, with the goal to make open systems available
to the industry. DCE exists since 1989 and has been developed for several
years.

The technology comprises software services that reside on top of the
operating system; DCE is a middleware that employs lower-level operating
system and network resources. DCE enables organizations to distribute
processing and data across the enterprise.

DCE was one of the first software solutions available from a vendor-
neutral source that enables the development, usage and maintenance of

 INFLUENCES FROM EARLY MIDDLEWARE PLATFORMS 105

distributed applications in heterogeneous systems. DCE is available for
many types of computing systems and operating systems.

Communication between DCE applications is based on RPC. DCE uses
a language for describing interface definitions and has tools that automate
the mapping to programming languages. In addition, DCE provides a
number of services:
– Security Service -- authenticates the identities of users, authorizes access

to resources on a distributed network, and provides user and server
account management.

– Directory Service -- provides a single naming model throughout the
distributed environment.

– Time Service -- synchronizes the system clocks of the computing
systems in the distributed system.

– Threads Service -- provides multiple threads of execution capability.
– Distributed File Service -- provides access to files across a network.

The DCE RPC is an optional means for interaction between CORBA
objects. However, DCE RPC is not widely used in CORBA systems, since
the OMG has developed its own protocol for object interactions.

4.2.5 Observed concerns

Despite the many differences that can be found between the early RPC, the
V distributed system, ANSAware and OSF DCE, these systems have a
common structure for supporting interactions between software
components. The four systems discussed before can be seen as generations
of distributed systems that have contributed to a consolidated structure of
the object middleware systems of today. The systems discussed have a
number of concerns in common.

In all four systems, there is a clear separation between interface and
implementation. The early RPC and V distributed system do not have an
explicit definition of an interface, but do mention the need to separate the
protocol definitions from the software implementation.

With ANSAware and later OSF DCE a language (IDL) for describing an
interface is introduced. This language expresses the permitted interactions
and the allowed types of interaction data. IDL definitions enable early
validation of the (syntactic) compatibility of software components.

The mapping of remote calls to the run-time infrastructure is
automated. The systems discussed have tools that can map IDL definitions
to programming languages and network representations. These tools
generate a stub to shield an application from the underlying mechanisms for
(remote) interactions.

106 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

The systems discussed provide a means to map to various transport
protocols. Applications are shielded from choosing a suitable transport
protocol and managing connections.

Exceptions are the generalised way to deal with failures due to failures of
the network or the remote host. If an interaction fails after a configurable
number of retry attempts, the application receives an exception from the
run-time system.

The V distributed system shows that performance benefits can be
achieved by a fixed header size, with an optional and variable size data
portion. The RPC mechanisms found in ANSAware and OSF DCE adopt
this principle.

The RPC is the key mechanism for interaction between distributed
software components found in all four systems. In ANSAware and DCE the
RPC system is augmented with general purpose infrastructure services, such
as the trader, time services, security services, etc. These services are general
purpose in the sense that they can be reused in many application domains.

4.3 Support provided by contemporary object
middleware

The design of a distributed application is simplified when an application
designer can assume the availability of an infrastructure that supports
possibly distributed application objects. Object middleware offers the
supporting infrastructure to computational objects. The support offered by
object middleware follows from the support that computational objects
require. In any case, object middleware provides the functionality to
implement the relative abstract notion of computational object binding and
it provides the functionality to implement one or more of the distribution
transparencies of the computational model

This section results in a set of features that must at least be supported by
object middleware that complies with our reference model.

To arrive at this set of features, first the layers and functions found in
CORBA and J2EE are reviewed. Then, based on these observations and the
common concerns identified in the previous section and the distribution
transparencies listed in Chapter 2, a set of object middleware features is
listed.

4.3.1 CORBA layers and functions

A high-level overview of CORBA, its internal parts and the organisational
processes that regulate the standardisation of CORBA have been discussed

 SUPPORT PROVIDED BY CONTEMPORARY OBJECT MIDDLEWARE 107

in chapter 3. This section focuses on the layers and functions of the internal
parts of CORBA, the CORBA services and the CORBA component model.

CORBA
The ORB is responsible for all of the mechanisms required to find the
server object for the request, to prepare the server object to receive the
request, and to communicate the data making up the request. The interface
the client object sees is completely independent of where the server object
is located, what programming language it is implemented in, or any other
aspect that is not reflected in the object’s interface [CORBA].

An ORB provides object invocation support, location transparency,
access transparency and object lifecycle management.

The General Inter-Orb Protocol (GIOP) specifies a standard transfer
syntax (low-level data representation) and a set of message formats for
communications between ORBs. GIOP is designed to work directly over
any connection oriented protocol.

The Internet Inter-ORB Protocol (IIOP) specifies how GIOP messages
are exchanged using TCP/IP. The IIOP specifies how GIOP establishes and
tears down TCP/IP connections and how TCP/IP connections are used to
transport GIOP messages.

To exchange GIOP messages by means of another protocol than
TCP/IP, the OMG has defined the extensible transport framework
[ETS02]. This framework provides a set of interfaces that give an
infrastructure designer the ability to create and insert a new transport
protocol underneath an existing message distribution layer.

On the server side, CORBA defines the Portable Object Adapter (POA)
that manages server objects. A POA maintains the relation between a server
object and the actual code and data that implement the object. In addition,
the POA manages the lifecycle of a server object and creates an object
reference when a server object is instantiated.

A stub on the client side and a skeleton on the server side perform
marshalling and demarshalling of remote invocations. CORBA also enables
an application object to create a request at run-time, through the Dynamic
Invocation Interface (DII). A server object can demarshall a request at run-
time through the Dynamic Skeleton Interface (DSI).

CORBA services
The CORBA services specifications [OES01, ONaS02, OLS01, ONoS02,
OTrS00] are the part of the Object Management Architecture (OMA) that
define general purpose services for CORBA applications.

108 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

CORBA component model
The CORBA component model (CCM) [CCM01] defines a component as a
basic meta-type, which is an extension of a CORBA object meta-type. A
component is defined using CORBA IDL. Components are addressed by
their component reference, which is in fact a specialised object reference.

The CCM component is a unit of instantiation, and a component package
is a unit of deployment. So, the CCM component corresponds to a
computational object, whereas a CCM component package corresponds to
a component.

A CCM component package maintains one or more implementations of
a component (section 69.1 – [CCM01]). It is represented by a software
package descriptor and a set of files. The software package descriptor
defines the properties of a CCM component package using an XML
formatted structure. The software package descriptor consists of a generic
part and a CCM specific part.

The CCM container provides the runtime environment of a CCM
component. The container uses the POA, ORB and a set of CORBA
services as supporting services and shields the application component from
the use of these services. A set of configuration values, i.e., name-value
pairs, configures the CCM container when it is created. The specification
does not exhaustively define what these configuration values are.

At deployment time, the ComponentInstallation interface is used to
install a component package. A deployment application calls the
ComponentInstallation interface with a reference to the component
package as a parameter. As a result, several objects related to the parts
defined in the component packages are created. One of these objects is the
CCM container.

4.3.2 J2EE layers and functions

High-level overviews of the Java 2 Enterprise Edition (J2EE), its internal
parts and the organisational processes that regulate the standardisation of
J2EE have been discussed in chapter 3. This section focuses on the layers
and functions of the internal parts of Java RMI and J2EE.

Java RMI
The Java Remote Method Invocation (RMI) specification [RMI02] defines
how an invocation of a Java server object that resides in another virtual
machines is supported. RMI provides the mechanism by which client and
server objects communicate. Details of communication between remote
objects are handled by RMI, to the application developer remote
communication looks just like standard invocations.

 SUPPORT PROVIDED BY CONTEMPORARY OBJECT MIDDLEWARE 109

A stub on the client side and a skeleton on the server side perform
marshalling and demarshalling of remote invocations. RMI server functions
are provided by instances of RemoteObject and its subclasses. RMI provides
lifecycle management by means of activatable objects. An Activatable object
is a Java server object that is registered by an activation description at an
activator object. Such objects are activated on an as-needed basis, thus
saving resources on the server host.

RMI allows for native RMI and IIOP as alternative messaging protocols.
Using IIOP as a messaging protocol enables CORBA objects to invoke Java
objects and vice versa.

Native RMI conveys messages by the RMI transport protocol or by
HTTP. Message transport through HTTP has been added to the RMI to let
object invocations traverse through firewalls. An invocation supported by
native RMI is conveyed using standard TCP/IP communication. However, if
a firewall prevents TCP/IP connection establishment, the invocation is
transparently conveyed by HTTP.

RMI defines an interface, called RMISocketFactory, which provides
provides hooks for customisation of the socket object that RMI uses.
Through this interface, customised sockets can be provided that enable
alternative transports to be plugged into RMI.

J2EE general purpose object services
J2EE uses a number of general purpose services to support distributed
applications. The Java Messaging Service (JMS) [JMS02] provides
decoupled interactions and one-to-many interactions. The Java Naming and
Directory Interface (JNDI) [JNDI01] is an interface specification for
naming of objects. JNDI provides an interface with directory and naming
functionality to Java applications.

Enterprise Java Beans
The Enterprise Java Beans (EJB) specification defines an architecture for
distributed object computing. An EJB component corresponds to a
computational object. EJBs are packaged in an EJB ARchive (EAR).

An EAR contains the binary representation of one or more EJBs and a
deployment descriptor. The deployment descriptor provides structural
information of the EJBs, such as supported interfaces and external
dependencies, and it provides assembly information, such as how client and
server interfaces of EJBs should be bound. An EAR is a unit of deployment
and therefore corresponds to a component.

The run-time environment for an EJB is the EJB container. The run-
time environment for an EAR is an application server. The application
server uses general purpose services, such as JNDI and JMS as supporting
services and shields the EJB component from the use of these services.

110 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

4.3.3 Observed concerns

CORBA and J2EE are contemporary object middleware platforms that
reveal some common concerns that are needed to support distributed
object applications.

Just as with the early middleware platforms, both platforms clearly
separate between interface specification and implementation. In CORBA an
application designer uses OMG IDL to specify an interface, in J2EE the Java
keyword interface is used.

An application designer that uses these object middleware platforms
does not have to design the means to support interactions between possibly
remote objects. In CORBA the ORB supports object interactions, whereas
Java RMI provides this support in J2EE.

Object interactions are conveyed as messages between peer entities.
CORBA defines the GIOP protocol and J2EE uses native RMI or HTTP to
convey messages. Application designers are shielded from managing the
connections needed by these message protocols. CORBA allows the
transport protocol that GIOP uses to be replaced. The default transport
protocol is TCP/IP. The combination of GIOP and TCP/IP is called IIOP.
IIOP defines interoperability rules between ORB implementation of
different vendors. Both platforms allow an infrastructure designer to
replace the default messaging functionality with other messaging functions.

Both platforms shield application designers from differences in the
representation of application data that may result from differences in
hardware architectures of computing nodes. Consequently, access
transparency is provided.

Support for object lifecycle management is provided. CORBA defines
the POA as a standard object lifecycle manager whereas an activator object
provides this functionality for J2EE.

Naming and directory services are defined for both platforms as general
purpose infrastructure services. These services offer increased support for
location transparency. To locate a server object based on a name is
supported by a naming service in CORBA and the JNDI in J2EE.

Decoupled communications, one-to-one and one-to-many
communications, is also supported as a general purpose service. This
support is provided by the event or notification service in CORBA and the
Java Messaging Service in J2EE.

Each platform defines a component model, which provides support for
deployment. The environment where components are deployed is called
the container for both J2EE and CORBA.

 SUPPORT PROVIDED BY CONTEMPORARY OBJECT MIDDLEWARE 111

4.3.4 Supported features

The following list of features must at least be supported by object
middleware that complies with our reference model:
– Object invocation support: a client object must be able to invoke a

server object so the object middleware must ensure that invocations are
delivered;

– Access transparency support: objects can be instantiated on computing
nodes constructed from heterogeneous hardware and the networks that
connect these computing nodes may also be heterogeneous, so the
object middleware is responsible to deliver invocations despite this
heterogeneity.

– Location transparency support: objects can be geographically distributed
so the object middleware is responsible to deliver invocations to the
proper location while hiding the location of a server object from a client
object;

– Decoupled interaction support: objects must be able to interact with
each other in a decoupled way, i.e. without waiting for a reply, so the
object middleware must support decoupled interactions;

– One-to-many interaction support: an object must be able interact with
many objects in a single action, so the object middleware must ensure
that interactions are delivered to multiple objects;

– Object lifecycle management support: objects must be created,
activated, deactivated and destroyed during their lifetime, so the object
middleware is responsible for maintaining the lifecycle of an object;

– Deployment support: classes from which objects are instantiated are
packaged into a component that must be deployed in a configurable
run-time environment that enables parameterisation of component
through a deployment descriptor, so object middleware should support
configuration and enable parameterisation of a component.

The object middleware reference model constructed in this chapter must
be sufficiently powerful to support these features. Later on we show that
current object middleware systems that correspond to our model generally
comply with these features.

Our model does not consider other distribution transparencies, such as
failure, migration, relocation, replication and persistence transparency.
Support for these transparencies is only found in dedicated object
middleware systems and therefore these transparencies are not taken into
account as features supported by our reference model. Supporting these
transparencies would make our model less generic.

112 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

4.3.5 Feature sets

Historical developments have influenced the internal structure of an
infrastructure component. The portability reference point of an
infrastructure component changes over time as a new generation of an
object middleware system becomes available that supports additional
features. Older generations of object middleware systems may support only
a subset of the features identified in section 4.3.4.

To relate our object middleware reference model with current and
older generation object middleware platforms, we identify three parts. Each
part meets a subset of the features identified in section 4.3.4. The subsets
of features are labelled CFS, SFS, EFS.

The three subparts are object communication middleware, general purpose
object services and the component execution environment. The object
communication middleware provides support for object invocations,
location transparency, access transparency and limited support for object
lifecycles (CFS). The general purpose object services provide support for
decoupled interactions, one-to-many interactions and increased location
transparency (SFS). The component execution environment offers
extended support for object lifecycle management and deployment (EFS).

Some of these subparts depend on others. The general purpose object
services depend on the object communication middleware. The component
execution environment depends on the general purpose object services and
on the object communication middleware.

The structuring of object middleware related to feature sets is depicted
in Figure 4-5

Application Components

Object Communication
Middleware

Component Execution Environment

Object
Middleware

Distributed Resource Platform

CFS

General Purpose Object
Services SFS

EFS

D
ep

en
ds

 o
n

Figure 4-5
Structure of object
middleware related
to feature sets

 OBJECT COMMUNICATION MIDDLEWARE 113

How each of these subparts offers support in accordance with their related
feature set is discussed in the sequel.

4.4 Object communication middleware

The object communication middleware relates to software that enables objects to
communicate with each other, irrespective of their location, the computing
environment they are deployed on, or the network that is used for data
transport. The object communication middleware layer hides all the
heterogeneity aspects with respect to remote object interactions. This
includes the common concerns such as representation of interaction data in
a common format, type checking of interaction data, the binding of
programming language specific method invocations to a remote function,
exception delivery in case of failures and mapping to the transport facilities
of the underlying distributed resources. The permitted interactions and
allowed interaction data types supported by the object communication
middleware layer must be described in an interface definition language
(IDL).

4.4.1 Engineering view

According to the engineering view on a distributed system, the system parts
are modelled as engineering objects. A stepwise refinement of the
engineering specification results in the structure of our object
communication middleware model. The engineering model constructed in
this section complies with the feature set CFS as identified in the previous
section.

The high-level engineering specification of the object communication
middleware shows this middleware as a channel that supports the
interactions between basic engineering objects (BEO). Figure 4-6 shows
this channel. This figure also shows that the interfaces between the BEO
and the object communication middleware correspond to the portability
reference points as discussed in section 4.1.3.

Capsule

Client
BEO

Server
BEO

Object
Communication

Middleware
(as channel)

Capsule

Portability reference points

Figure 4-6 High-
level engineering
view

114 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

An interaction between a client BEO and a server BEO is composed of a
request and a reply interaction. As discussed in chapter 2, a request
interaction consists of a submit action at the client interface and a deliver
action at the server interface. The reply interaction consists of a submit
action at the server interface and a deliver action at the client interface. To
support an interaction, the object communication middleware conveys
interaction data as a message. These observations lead to a refined
engineering view.

In a refined engineering view, the object communication middleware is
refined into stub objects, object managers and a lower level channel that
supports message distribution.

A client stub object when invoked by a client BEO converts a request in
a message containing the request and its parameters. The message
distribution service is responsible to transparently convey the message to
the remote stub.

The object manager manages the lifecycle of the BEOs. It ensures that a
client BEO can address a server BEO by means of an object reference. We
define an object reference as a pointer to a server BEO that can be used
anywhere in the distributed system to address this BEO. The object
reference is created on the server side when an object is created and a client
BEO uses it to address the server BEO.

The portability reference points are now covered by the interfaces of the
stub and the object manager. Figure 4-7 shows these reference points and
how the object manager, stub and message distribution service are related.

Capsule

Client
BEO

Server
BEO

Capsule

Client
Stub

Client
Object

Mgr

Server
Object

Mgr

Server
Stub

PRP
PRP

Message Distribution
Service

(as channel)

A client stub on the sending side of the message distribution service is
closely related to a server stub on the receiving side. The marshalling of
invocation parameters on the sending side must be reversed on the
receiving side. Therefore, the stubs have a common set of marshalling and
demarshalling rules.

Figure 4-7 Refined
engineering view

 OBJECT COMMUNICATION MIDDLEWARE 115

The object managers on the client and server side are also closely
related. The object reference created on the server side must be interpreted
correctly by the object manager on the client side to ensure that the
message distribution service sends messages to the capsule in which the
server BEO resides.

A further refined engineering view reveals the internal structure of the
message distribution service. This service sends a request message from the
client capsule to the server capsule. After the server BEO has produced a
reply and the stub has marshalled the parameters of that reply, the message
is returned to the client capsule. It is the responsibility of the message
distribution service to maintain the relationship between request and reply
messages.

Messages are transported by a transport service that offers a connection
oriented reliable transport service. Connections of the transport service are
established and teared down by a messaging object.

On the client side a client messaging object receives a request message
from a stub. The client messaging object determines the destination address
of the message. The destination address is obtained from the object
manager, which knows how to extract address information from an object
reference. The messaging object also adds an identifier to the message to
enable the remote messaging object to associate a reply message with its
request message.

The messaging object creates a connection using the transport service.
Connections may be reused for multiple invocations between the same
client and server BEO. Connections are teared down by the messaging
object on the client side, on the server side or by the transport service itself.
In case the messaging object aims to reuse connections, it will reuse a
connection that already exists as the result of a previous request.

A message received at the server side is forwarded to the object
manager. The object manager knows how a destination address is related to
an instance of a server BEO. From this relationship the stub that is
associated to a server BEO is derived. The messaging object removes the
information added on the client side from the message and offers the
request message to the stub for demarshalling.

Figure 4-8 shows these how the messaging objects and the transport
service are related.

116 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

Capsule

Client
BEO

Serve
r BEO

Capsule

Client
Stub

Client
Object

Mgr

Server
Object

Mgr

Server
Stub

PRP
PRP

Client
Messaging

Object

Transport
Service

(as channel)

Server
Messaging

Object

Yet another refined view reveals the internal structure of the transport
service. The reliable connection oriented service of the transport service
may not be offered in all cases by the transport network. Therefore a
transport adaptor object is responsible to leverage the service offered by the
transport network.

Figure 4-9 shows how the messaging, transport adaptor objects and the
transport network are related. This figure also reveals the interoperability
reference points.

Capsule

BEO BEO

Capsule

Stub Object
Mgr

Object
Mgr

Stub

PRP
PRP

Messaging

Transport Network

Messaging

Transport
Adaptor

Transport
Adaptor

IRP IRP Client
Side

Server
Side

Figure 4-8 A
further refined
engineering view

Figure 4-9 Most
refined engineering
view

 OBJECT COMMUNICATION MIDDLEWARE 117

Each of the object manager, stub, messaging and transport adaptor objects
in the client capsule has a relation with their peer objects in the server
capsule. For example, the stub objects are peers in the sense that the
encoding rules on the client side must be understood by the stub on the
server side to decode request parameters. In the same way the messaging
objects are peers because the formatting of a message created on the client
side must be understood on the server side.

The peer transport adaptor objects together offer a transport service to
the messaging objects. The peer messaging objects together offer a
messaging service to the stub objects. The peer stub objects and peer object
manager objects offer object interaction services to the BEO objects.

4.4.2 Object communication middleware layers

The stacking of peer objects shown in Figure 4-9 results in a layered
structure for the object communication middleware. The horizontal
layering of the object communication middleware results in three layers:
the object interaction layer, a message distribution layer and a transport
adaptation layer. Figure 4-10 shows how the engineering objects are related
to the internal layers of the object communication middleware.

Stub Object
Mgr

Object
Mgr

Stub

Messaging

Transport
Network

Messaging

Transport
Adaptor

Transport
Adaptor

Object
Interaction
Layer

Message
Distribution
Layer

Transport
Adaptation
Layer

Object interaction layer
The object interaction layer offers distributed objects the services needed to
interact with each other despite differences induced by the heterogeneous
distributed resource platform. The object interaction layer uses stubs to
offer a local interface to a possibly remote object. The stub is specific for a
particular programming language and is usually generated from an IDL
specification. The stub hides the marshalling and unmarshalling of
parameters from a client object. Marshalling concerns the placement of
interaction data in a message such that it can be conveyed across the

Figure 4-10 Object
communication
middleware layers

118 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

network. Differences in byte-order due to different CPU architectures on
the client and server side are resolved

In addition, the object interaction layer is responsible for the
management of object references. The object manager on the server side
creates an object reference. An object reference consists of one or more
transport addresses that are understood by the transport adaptor and an
identifier that uniquely identifies a server object within its capsule. An
object reference is opaque to the client BEO. A client side object manager
knows how to interpret an object reference.

An object manager creates an object reference when a server BEO is
bound to the object interaction layer, i.e., a server BEO makes its interface
remotely accessible. Resources for processing, storage and communication
are scarce. An object requires resources in order to execute, but objects
bound to the object interaction layer do not require these resources all the
time, so scarce resources can be shared between multiple server BEOs.
Consequently, lifecycle management functions are needed to assign
resources to an object. Lifecycle management functions allow objects to be
registered, instantiated, activated and deactivated. The life cycle of an object
consists of two nested cycles: the instantiation and the execution life cycle.
The first life cycle relates to publishing an object reference and the second
life cylce relates to object activation. Figure 4-11 shows the nesting of these
life cycles.

Component
Lifecycle

Unavailable

Available

Deployment Withdrawl

Not instantiated

Instantiated

 Inactive

Active De-activation

 Activation

 Creation Destruction
Instantiation
Lifecycle

Execution
Lifecycle

A component clusters related classes into a more coarse grained unit of
deployment. An object is instantiated from its class that is contained within
a component. Until a component is deployed, the object is unavailable.
When a component is deployed in its run-time environment, the object

Figure 4-11 Nested
life cycles

 OBJECT COMMUNICATION MIDDLEWARE 119

becomes available and may then be created using its class. However, an
object that is created exists as a virtual entity, i.e., no resources have been
assigned to it and the object is inactive. At this stage, the object
communication layer only maintains an object reference to the newly
created object. When the object is activated, as part of its execution
lifecycle, resources for communication, storage and processing are assigned
to the object. Conversely, an object can be de-activated while its object
reference is still valid. An object reference becomes invalid when an object
is destructed, i.e., at the end of its instantiation lifecycle.

Distinguishing the execution life cycle from the instantiation lifecycle
enables the object interaction layer to efficiently assign resources to objects.
A huge number of objects can be created, while only a limited subset of
these objects actually requires storage, processing and communication
resources at some point in time.

Message distribution layer
The message distribution layer supports the object interaction layer with a
message distribution service. Object interactions between remote objects
require the transport of request and reply messages. The message
distribution layer is responsible to locate the transport endpoints that are
used on the server side to receive request messages. A server object may
have multiple transport endpoints, in which case the message distribution
layer chooses a suitable endpoint. This choice may be directed by policies
given by the application.

Following the choice of a suitable transport endpoint, a transport
association between a client and a server object is established. Once this has
been established, messages are exchanged between that client and server
using that transport association. The message distribution layer ensures that
the relation between a request and a reply message is maintained so that a
client object receives a reply that belongs to a request issued earlier.

An object interaction may carry a large amount of data, which can be
more efficiently transported when fragmented into a set of smaller messages
that are reassembled at the receiving side. To support this a message
distribution layer may perform fragmentation and reassembly of large
messages.

Transport adaptation layer
The transport adaptation layer adapts the systems specific services of the
distributed resources to the needs of the layer above. Since the distributed
resources are potentially heterogeneous, the transport network may offer
different levels of service. The transport service can for example be
connection oriented, connectionless, reliable or unreliable. The transport

120 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

adaptation layer leverages the system specific transport services to a
transport service that reliably transfers data.

4.4.3 Interoperability concerns

One of the prime purposes of object communication middleware is
interoperability between software components developed for different
hardware platforms and with different implementation languages. Ideally,
the object middleware implementation would be obtained from various
vendors and components deployed on these implementations should be
able to collaborate. Interoperability of two object middleware
implementations concerns agreement on the rules for collaboration
between these implementations. Each of the layers of the object
communication middleware contributes to the interoperability rules that
define the interoperability reference point.

Figure 4-12 shows how an interoperability reference point is used in a
situation where multiple vendors provide an object communication
middleware implementation. The interoperability reference point is defined
between the three layers of the object communication middleware. This
enables a client object instantiated on an implementation produced by
vendor X to interact with a server object instantiated on an implementation
produced by vendor Y.

Transport adaptation Transport adaptation

Object
Communication

Middleware
Message distribution

Object interaction

Server
Object

Message distribution

Object interaction

Produced by
vendor X

Produced by
vendor Y Interoperability

reference point

Transport Network

Compatibility
agreements

Client
Object

In case a third party produces one or more of the layers of the
communication middleware, the set of interoperability rules can be relaxed.
This situation is depicted in Figure 4-13, where producer Z delivers the
transport adaptation layer. There is no need for interoperability rules
between different transport adaptation layer implementations as the
implementation of this layer is within the realm of producer Z. However, a
portability reference point must be defined between two layers.

Figure 4-12 An
interoperability
reference point

 OBJECT COMMUNICATION MIDDLEWARE 121

Produced by
vendor Z

 Transport adaptation

Object
Communication

Middleware
Message distribution

Object interaction

Client
Object

Server
Object

Message distribution

Object interaction

Produced by
vendor X

Produced by
vendor Y

Interoperability
reference point

Portability
reference point

The introduction of an additional portability reference point between layers
within the communication middleware reduces the set of interoperability
rules. A simplified interoperability reference point allows extension of the
communication middleware with a specialised transport adaptation layer.
With these extensions the object middleware can benefit from specific
characteristics of the network, such as QoS features, without compromising
the features that the object communication middleware must support.

Enabling QoS features of a transport network may dictate that a single
vendor produces a layer. Therefore portability reference points between
communication middleware layers should be standardised.

4.4.4 Offered support

The three layers that constitute the object communication middleware
together provide support for a subset of the features, i.e. CFS, identified in
section 4.3.4.

The object interaction layer offers support for object invocations. This
layer ensures that a client invocation is delivered to a server object and that
the response of the server is delivered to the client. A reply message is
related to its associated request message by the message distribution layer.
The object interaction layer produces an opaque object reference that hides
the location of a server object and thus offers location transparency. The
message distribution supports the object interaction layer in providing
location transparency by establishing a transport connection between the
location of the client and the location of the server. However, an object
reference must contain addressing information that the message
distribution layer extracts to establish a transport connection. As a result

Figure 4-13 A
portability reference
point

122 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

location transparency is limited, since the transport address reveals the
physical location of a server object.

Marshalling and unmarshalling functions ensure that invocation
parameters conveyed between a client and server are independent of the
programming language in which client and server objects are developed.
The transport adaptation layer ensures that heterogeneity of underlying
transport networks is shielded from the message distribution layer. As a
result the collective services of the message distribution layer and transport
adaptation layer provide access transparency support.

The object interaction layer also offers support for object life cycles,
through the management of object references and the decoupling of the
instantiation life cycle from the execution lifecycle.

The message distribution layer offers support for decoupled interactions in
case it supports store and forward of messages. If this is supported then a
client object can invoke an object without waiting for a reply and obtain the
result of the invocation later. The message distribution layer can store a
message at the server side or at the client side.

4.5 General purpose object services

One or more distributed objects that enhance the service offered by the
object communication middleware, are offering an object service. In case
these distributed objects offer a service that useful for a large set of
distributed applications and an application designer considers that service
fundamental to the design of a distributed application, such a service is
called a general purpose object service.

Examples of general purpose object services are event service, licensing
service, persistent state services, property service, time service, naming
service. Table 4-1 shows a brief description of each of these services.

Service Name Description
Event Service Defines two roles for objects: supplier and consumer.

Suppliers produce event data, and consumer process
event data.

Licensing Service Provides support for the licensing of software artefacts.
Naming Service Provides the mechanism to locate objects based on a

logical, location independent name
Persistent State
Service

Provides support for persistent storage of the state of an
application object.

Property Service Provides the ability to associate named values with
application objects.

Table 4-1
Examples of
general purpose
services

 GENERAL PURPOSE OBJECT SERVICES 123

Time Service Provides a general clock interface to obtain the local
system time in a standard format.

This section discusses those general purpose object services that leverage
the support of the object middleware to include the feature set SFS. An
object middleware that corresponds to the model presented in the previous
section and the model of the general purpose services discussed in this
section complies with the feature sets CFS and SFS.

General purpose object services use the object communication
middleware as a supporting infrastructure for (remote) interactions. The
computational viewpoint is the most appropriate view to explain the general
purpose object services, as this viewpoint suits an application designer and
it simplifies the integration with application specific objects. In the
remainder of this section the computational view of the naming service and
the event service are discussed.

4.5.1 Computational view of the Naming service

The Naming Service allows a human readable name to be associated or
bound to an object. The reference to that object can subsequently be found
by resolving that name within the Naming Service. Using the Naming Service
a name is bound to an object relative to a naming context. Different names
can be bound to an object in the same or different contexts at the same
time, this is called a name binding. A naming context is an object that
contains a set of name bindings in which each name is unique. In file
management terms, a naming context resembles basically a directory
structure for objects. A name is always resolved relative to a context; there
are no absolute names. To resolve a name is to determine the object
associated with the name in a given context. To bind to a name is to create
a name binding in a given context.

Because a context is an object like any other object, it can also be bound
to a name in a naming context, thus creating a naming graph. A naming
graph allows more complex names to reference an object. Given a context
in a naming graph, a sequence of names can reference an object. This
sequence of names (called a compound name) defines a path in the naming
graph that directs the resolution process. The naming service provides the
principal mechanism through which most client objects locate server
objects that they intend to use. Given an initial naming context, client
objects navigate naming contexts by retrieving lists of names bound to that
context.

A server registers an object reference with the Naming Service by
binding the object reference to a naming context. This name can then be
used by other components in the system to find the registered object.

124 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

The design of a naming service as a set of naming context objects, allows
these naming context objects to be distributed over several nodes. The
benefits of such a distribution, such as resilience against partial failures and
load sharing, have been shown for a pan-European object middleware
platform [HTW98].

4.5.2 Computational view of the Event service

The event services enables an object to send an event to many other objects.
An object that sends an event is called a producer and an object that
receives an event is called a consumer. Event production is decoupled from
event production through an event channel. A consumer can consume an
event at a later stage than when the event has been produced, even when
the producer has already been deactivated. Event consumption is not
acknowledged to a producer.

The initiative for event production can be at the producer object or at
the event channel. In case the initiative lays with the producer, the event is
pushed to the event channel, otherwise the event is pulled from the
consumer. On the consumer side events can also be pushed by the event
channel or pulled by the consumer. The computational objects that
constitute an event service are depicted in Figure 4-14.

 Producer
(pusher)

Event
Channel

Consumer
(pushed)

Producer
(pulled)

Push

Pull
Consumer
(puller)

Push

Pull

The role of a consumer and a producer with respect to an event channel
can be asymmetric. For example, in case a producer pushes events to an
event channel these events can be pushed to some consumers while other
consumers pull the event.

The event service decouples producer objects from consumer objects
and enables one to many communication of events.

Figure 4-14
Computational
description of an
event service.

 COMPONENT EXECUTION ENVIRONMENT 125

4.5.3 Offered support

The general purpose object services offer additional support to distributed
applications. Services that are reusable for many applications such as
Naming, Persistent State or Time services are examples of general purpose
object services. In some cases general purpose object services offer a
standardised interface to a complex distributed service whose
implementation requires the knowledge of a specialist. An example of such
a service is the Persistent State service, which coordinates persistent storage
of the internal state of application objects. An application designer uses
general purpose object services as proven building blocks that simplify the
design of distributed applications.

Support for decoupled interactions is offered through the Event service.
Although decoupled interactions can also be offered by the object
communication layer, in some cases this support is not available at this
level. The Event service enables decoupled interactions in case the object
communication middleware does not support this. It is a design choice of
an application designer to determine which solution is most suitable.

The Event services also offers support for one-to-many interactions. This
enables one application object to produce events for many interested
consumers of these events.

The support for location transparency is further extended by the Naming
service. This service enables an application object to lookup an object based
on a name or discover an object based on a set of properties of that object.
This hides the location of a server object completely from a client object.

4.6 Component Execution Environment

From the perspective of an application designer, the object communication
middleware in conjunction with the general purpose object services offers
sufficient support for distributed object applications and meets all but one
of the features of section 4.3.4. However, from the perspective of a
deployment designer, additional support for the deployment of components
is needed. This support concerns the configuration and parameterisation of
a component at deployment time.

Configuration and parameterisation of an application component should
be left to the deployment designer, however in practice an application
designer can easily mix these concerns with the computational design. We
review three examples that together demonstrate how these concerns can
be mixed:
– The first example concerns a computational object that acts as a factory

for other computational objects. As a policy, the factory immediately

126 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

activates each object that it instantiates. This policy is part of the
behaviour of the factory object as defined by the application designer
and is therefore embedded within the factory object. As a result,
lifecycle management of objects is statically configured within the
computational design and thus the application designer implicitly assigns
resources to objects. In this case, it is not possible for the deployment
designer to control the object lifecycle policy once the application
classes have been packaged into a component.

– The second example concerns the configuration and use of an event
channel. To use an event channel it is required that the channel is
created and that producer and consumer objects connect to the
channel. The lifecycle of an event channel and the associated producers
and consumers of that channel must be controlled. Channel
configuration from a computational object makes the use of the channel
and its producers and consumers application specific. Future use of this
computational object in the context of other computational objects is
limited as the channel establishment and connecting producers and
consumers is embedded in the computational design. In this case, it is
not possible for the deployment designer to control channel
configuration once the application classes have been packaged into a
component.

– The third example concerns the use of the naming service. Consider a
computational object that registers itself with a naming service and the
name it uses for registration is embedded within that object. Again, we
see configuration concerns mixed with application concerns. The
computational server object has a hard-coded name that client objects
must use to resolve the server object reference from the naming service.
In this case, it is not possible for a deployment designer to externally
control the name that the server object uses to register itself with the
naming service. Even if such a control interface is provided, it is
application specific and not for general use at deployment time.

These examples show that computational objects can easily be designed
with embedded configuration actions. As a result, application components
constructed from the classes of these application objects can only be
deployed as parts of a dedicated distributed application. Reuse of such
components in future distributed applications becomes restricted.
Separating application logic from deployment configuration requires object
middleware to offer standard interfaces for the deployment configuration of
a component.

The Component Execution Environment offers a run-time environment for
the deployment of components and configures components according to a
deployment descriptor. The component execution environment separates

 COMPONENT EXECUTION ENVIRONMENT 127

deployment and configuration from application logic, by shielding
components from the communication middleware and general purpose
object services. It offers interfaces for the deployment designer to configure
a component according to the needs of a distributed application. In
addition, it manages the lifecycle of objects (i.e., activation and deactivation
of objects), the processing and storage resources (including storage and
retrieval of object state to non-volatile storage), and possibly the transaction
and security context of object interactions.

A component execution environment is closely associated with a
particular component model. This means that it offers an environment for
the execution of components constructed according to that component
model. A component model prescribes standard interfaces for the
registration and manipulation of components.

4.6.1 Engineering view of a component container

The component execution environment (CEE) offers a deployment
designer the environment for the deployment of components. The CEE
consists of component containers that are the run-time environment for one or
more components. A container offers a set of interfaces that simplify the
deployment and configuration of a component. A container shields a
component from the underlying communication middleware and from a set
of general purpose object services. Functions of a container typically
include:
– Automatic lifecycle management of objects to preserve limited system

resources, such as main memory.
– Adaptation of a set of general-purpose object services. A container

typically provides an adaptation layer to services that provide
transaction, security and event notification. This adaptation layer frees
the application designer from locating, initializing and configuring these
services.

– Adaptation of interesting events from the communication middleware
and the general purpose object services for use by a component. For
example, a container can manage the events associated with a
transaction. This frees a component from handling these events and
enables a component to be involved in a transaction while the
component has no application code for transaction management. The
container can be configured to report only transaction failures to a
component as a standard exception.

A container uses a deployment descriptor to configure the run-time
properties of a component. An infrastructure designer is responsible for the
internal structure of a container. A deployment designer uses the interfaces

128 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

that an infrastructure designer prescribes as a means to realise the desired
run-time properties of a distributed application.

A container exposes a number of interfaces to an application
component. These interfaces constitute the portability reference point for a
component execution environment. The container adapts these interfaces
to the services offered by the object communication middleware and the
general purpose object services. In addition, a container exposes a set of
interfaces for deployment configuration.

Internally, a container typically has a service adaptor object, a life cycle
manager and a binding management object. The service adaptor object
adapts the general purpose object services to the needs of an application
component and according to the configuration settings that are received
through its deployment configuration interface. The lifecycle manager
manages the instantiation and execution lifecycle of application objects. The
binding management objects establishes bindings between client and server
objects using the object communication middleware.

Figure 4-15 shows which interfaces a container exposes and how a
container relates to object communication middleware and general purpose
services.

Object Communication Middleware

General purpose
object services

Application Component

Co
nt

ai
ne

r

PRP

Service
Adaptor

Lifecycle
Manager

Deployment
Configuration
Interfaces

Binding
Mgmt

The CEE completes the object middleware reference model. The object
middleware reference model reveals several layers and subparts that
constitute object middleware. Each of these layers and their subparts are

Figure 4-15
Engineering view of
a container

 EVALUATION AND CONCLUSION 129

needed to satisfy the requirements of application and deployment
designers.

4.7 Evaluation and conclusion

This section assesses the correspondence of our generic object middleware
reference model with CORBA, J2EE and Web services. Conclusions
regarding our reference model are drawn.

4.7.1 Correspondence with CORBA, J2EE

CORBA
An ORB corresponds to an infrastructure component. A set of ORBs
connected through a transport network offer an object communication
middleware. GIOP corresponds to the message distribution layer in our
reference model. The set of GIOP messages are a part of the
interoperability reference points between ORBs.

The adaptation of GIOP connection management to TCP/IP connection
management corresponds to the transport adaptation layer. The extensible
transport framework corresponds to an interoperability reference point
between the message distribution layer and the transport adaptation layer.

A POA corresponds to a server object manager in our reference model.
The CORBA stub and DII correspond to the client stub, whereas the
skeleton and DSI correspond to the server stub in our reference model.
The DII, DSI, stub, skeleton, POA and ORB interface define the portability
reference point for CORBA 2.x implementations. These entities collectively
correspond to the object interaction layer in our reference model.

The CCM container constitutes the portability reference point as
defined for the component execution environment of our model.

J2EE
An implementation of the RMI specification corresponds to the object
communication middleware in our model.

This corresponds to the nested lifecycles defined in our reference
model. The interfaces provided by the stub, skeleton, Activatable object and
RemoteObject correspond to the object interaction layer in our reference
model.

The internal structure of RMI contains a messaging layer that
corresponds to the message distribution layer our reference model. The
IIOP specification defines an interoperability reference point between Java
RMI and CORBA. RMI defines an interface, called RMISocketFactory,

130 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

which provides a portability reference point for the transport adaptation
layer of RMI.

JMS and JNDI are examples of services that correspond to the general
purposes services in our reference model.

An application server corresponds to a container in our reference
model. The EJB container interfaces constitute the portability reference
point as defined for the component execution environment of our model.

4.7.2 Correspondence with Web services

The term “web services” is used loosely to denote a collection of (related)
technologies. These include:
– SOAP (Simple Object Access Protocol) [SOAP01] – “an emerging

distributed middleware technology that uses a lightweight and simple
XML-based protocol to allow applications to exchange structured and
typed information across the Web”

– WSDL (Web Services Description Language) [WSDL01] – an XML-
based language to describe web services “interfaces”

– UDDI (Universal Description, Discovery and Integration) [UDDI] /
WS-Inspection (Web Services Inspection Language) [NaBa01] – Service
description and discovery mechanisms.

The use of these technologies for the realisation of a distributed system
ensures interoperability between services offered over the web. A web
service corresponds to a computational object in our model.

Correspondence to the object communication middleware
The SOAP specification defines how a client of a web service invokes this
service. A client stub in our reference model corresponds to a service proxy
and a server stub in our model corresponds to a service implementation
template. SOAP messages are formatted as XML data structures, which are
structured according to the interface definitions described in WSDL. SOAP
corresponds to the object interaction layer in our reference model.
However, SOAP lacks the notion of an object manager and does not
provide the mechanisms for managing the life cycle of a web service.

Message distribution for web services is mostly based on HTTP,
although other message distribution layers such as SMTP are also allowed.
The message distribution layer takes the XML formatted messages and
conveys these messages from client to server side and vice versa.

Since SOAP depends on XML as means to structure SOAP messages and
the interfaces to manipulate an XML structure are standardised, in the
DOM [HHW+00] and SAX [SAX98] specifications, it can be argued that

 EVALUATION AND CONCLUSION 131

DOM and SAX define alternative portability reference points for web
services.

Correspondence to the general purpose object services
UDDI is a specification for a general-purpose service, which corresponds to
a trading service in our reference model.

Currently, the web services specifications do not define any entities that
provide decoupled interactions, such as one-to-many and many-to-many
interactions. No corresponding entities to an event service can be found.

Correspondence to the component execution environment
Support for deployment, such as the specification of an entity that
corresponds to a container in our reference model, is not (yet) provided by
the web services specifications.

4.7.3 Summary

Table 4-2 summarises the correspondence between notions in our object
middleware reference model and CORBA, J2EE and Web services.

Reference
model notions

CORBA J2EE Web services

Communication
middleware

ORB Java RMI

 Object
interaction
layer

Stub, skeleton,
POA

Stub, skeleton,
Activatable object,
Remote Object

SOAP (although
without support
for life cycle
management)

 Message
distribution
layer

GIOP Native RMI, HTTP
or IIOP

HTTP or SMTP

 Transport
adaptation
layer

IIOP RMISocketFactory
(for native RMI
only)

- (integrated with
message
distribution layer)

General
purpose
services

 Naming
service

Naming service JNDI UDDI

 Event service Event or
Notification
Service

JMS -

Component
execution
environment

Component
server

EJB server -

 Container CCM container EJB container -

Table 4-2
Correspondence
between notions in
our reference model
and contemporary
object middleware
platforms

132 CHAPTER 4 AN OBJECT MIDDLEWARE REFERENCE MODEL

4.7.4 Conclusion

This chapter shows that stepwise refinement, as used for the structured
design of a distributed system, stops when either the parts of a design are
readily available in the implementation concept space, or when the parts of
a design can be generated using transformation rules.

An object middleware platform is a supporting generic infrastructure,
which is independent of a specific distributed application. Distributed
system design benefits from the use of object middleware.

An application designer that refines a computational design of a
distributed application and that directs this design towards object
middleware, benefits from the readily available functionality of object
middleware platforms in the implementation concept space. Object
middleware provides functionality for the relative abstract notion of object
binding and it provides the functionality to implement one or more of the
distribution transparencies of the computational model. In any case, object
middleware provides the mechanisms needed to overcome problems of
distribution.

A few specialists can focus on the design of the mechanisms needed to
overcome problems caused by distribution. This is cost-effective as these
mechanisms can be reused in multiple cases of distributed application
design. The tasks of middleware specialists coincide with the tasks of the
infrastructure designer identified in Chapter 2.

CORBA, J2EE and Web services are examples of contemporary object
middleware platforms that have resulted from advances in distributed
systems. Early middleware platforms have contributed to the functions and
layers found in these middleware platforms.

A number of common concerns of early and contemporary object
middleware platforms have been identified in this chapter. Based on these
observations an object middleware reference model has been constructed.
This reference model defines object communication middleware, general
purpose services and the component execution environment as sub parts.

Some or all of the layers and functions of our object middleware
reference model are found in contemporary object middleware platforms,
such as CORBA, J2EE and Web services.

 EVALUATION AND CONCLUSION 133

In case multiple vendors implement an object middleware design,
interoperability of these implementations is directed by rules that define an
interoperability reference point. Some of the rules of the interoperability
reference point can be relaxed, when a portability reference point is
defined. This enables specialised mechanisms to be plugged-in to the
communication middleware without compromising interoperability.

Chapter 5

5. Models for QoS aware middleware

This chapter provides the concepts to model QoS aspects of an open
distributed system. This chapter refines the intuitive notion of QoS
provided in Chapter 2 and introduces a set of modelling concepts to
incorporate QoS aspects into the engineering and computational
viewpoints. The concepts discussed in this chapter are the building blocks
for the design presented in Chapter 6.

Chapter 2 introduces the modelling concepts and principles that are
relevant to the design of an open distributed system. The intuitive notion of
QoS introduced in chapter 2 is refined in this chapter. The modelling
concept space, as discussed in Chapter 2, is expanded with meta-modelling
concepts that are used to develop computational QoS designs. A
computational QoS design is concerned with the design of QoS aspects of
computational objects, such as Qoffered, Qrequired and Qagreed.

An object middleware that provides QoS support to components of a
distributed application incorporates QoS functions. These QoS functions
must build on the QoS functions that the underlying resources, such as
resources for computing and communication, provide. Chapter 3 concludes
that new protocols and mechanisms for the control of QoS in packet-based
networks are expected to emerge. Therefore, middleware QoS functions
must be able to adapt to these evolutionary changes of QoS functions. The
modelling concepts in this chapter enable this kind of adaptation.

Chapter 4 constructs an object middleware reference model. In this
chapter we relate the QoS design concepts to the reference model
presented in Chapter 4. This includes the definition of a correspondence
relation between computational QoS concepts and engineering QoS
concepts.

This chapter is structured as follows. Section 5.1 discusses the design
concerns of a QoS aware open distributed system, from the computational
and engineering viewpoints. This discussion results in the identification of

136 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

QoS relations between computational design concepts and QoS relations
between engineering design concepts. Section 5.2 provides a more in-depth
discussion of these QoS relations. Section 5.3 reviews the design principles
used to design QoS aware networks and applies these principles to the
design of QoS aware middleware. Section 5.4 defines requirements on the
QoS design concepts. These QoS design concepts are then defined in
section 5.5 and presented as a meta-model in section 0. Section 5.7
evaluates our models and concludes this chapter.

5.1 Design concerns of QoS aware distributed systems

This section discusses the concerns that a designer of a QoS aware open
distributed system faces. The design concerns are regarded from the
computational viewpoint and the engineering viewpoint, respectively. A
correspondence relation between the design concerns of both viewpoints is
discussed.

5.1.1 Computational viewpoint concerns

The computational viewpoint abstracts from the functions and mechanisms
that are needed to deal with the inherent problems that arise from the
distribution of resources. In a similar way, a computational viewpoint
design abstracts from the functions and mechanisms needed to deal with
QoS aspects of an open distributed system. To simplify the design of a QoS
aware open distributed system, an application designer is supported by an
infrastructure that shields the application designer from the functions and
mechanisms needed to enforce, establish or maintain QoS agreements.

An application designer ideally expresses QoS aspects of an application,
independent of underlying mechanisms that establish and maintain QoS
agreements.

The functions needed to establish and maintain a QoS agreement,
support the computational design of a distributed application with
additional distribution transparencies to the distribution transparencies
identified in Chapter 2. We distinguish between functions and mechanisms
that only provide for the establishment of a QoS agreement and functions
that establish and maintain a QoS agreement. This leads to the definition of
a QoS enforcement transparency and a QoS control transparency, respectively.

The QoS enforcement transparency is a distribution transparency that hides the
functions and mechanisms needed to establish a QoS agreement, with the purpose
to simplify the design of a QoS aware distributed application.

Definition 10 QoS
enforcement
transparency

 DESIGN CONCERNS OF QOS AWARE DISTRIBUTED SYSTEMS 137

Establishment of a QoS agreement requires functions and mechanisms in
the middleware that configure the parameters of the distributed resource
platform in such a way that the QoS agreement is met. In other words, the
DRP is enforced into a configuration that ensures that the QoS agreement
is met. However, a middleware that provides QoS enforcement
transparency does not deal with changes in the DRP that result in the
violation of the QoS agreement. Maintaining a QoS agreement is an
additional concern covered by the QoS control transparency.

The QoS control transparency is a distribution transparency that in addition to
hiding the functions and mechanisms needed to realise a QoS enforcement
transparency, also hides the functions and mechanisms to maintain a QoS
agreement

A server computational object together with the binding is a provider of
QoS. A client computational object is a user of QoS (provided by the server
object and the binding).

Figure 5-1 shows a client object that is bound to a server object. The
QoS requirements of the client are labelled as Qrequired. The QoS offered by
the server are labelled as Qoffered. The QoS agreement of the established
binding is labelled Qagreed. The client object is in this case the QoS user,
whereas the binding and server object collectively act as a QoS provider.

Client
Computational

Object

Server
Computational

Object

Qrequired Qoffered

Qagreed

Binding

QoS user QoS provider

The discussion above shows that to introduce QoS awareness into a
computational design, an application designer needs meta-model concepts
to design computational QoS aspects.

5.1.2 Engineering viewpoint concerns

The engineering viewpoint reveals the functions and mechanisms needed to
enforce and maintain QoS agreements. These functions and mechanisms
are called QoS enforcement functions and QoS enforcement mechanisms,

Definition 11 QoS
control
transparency

Figure 5-1 QoS
user-provider
relation in the
computational
viewpoint

138 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

respectively. It is the responsibility of the infrastructure designer to design
the QoS enforcement functions and mechanisms.

The QoS provided by the middleware depends on the QoS provided by
the underlying resource platform, i.e., the DRP is a QoS provider to the
object middleware. As the result of the late binding principle, the QoS
support that the object middleware can provide to application components
can only be determined at run-time. The late binding principle dictates that
application components are bound to, i.e., deployed on, infrastructure
components at deployment time and that the design of application
components cannot incorporate deployment assumptions.

The infrastructure designer of a QoS aware middleware faces two
additional challenges: first to provide DRP independent interface to BEOs
for specification of QoS requirements, and second to integrate and use
existing QoS functions available from the DRP into the middleware.

In the engineering viewpoint, the transport network is the QoS provider
for the object middleware. The object middleware is a QoS user of the
transport network and it is the QoS provider for the client or server BEO
objects.

Figure 5-2 shows client and server BEO objects that are supported by
object middleware. Multiple QoS user provider relations are shown, i.e.,
between the BEO objects and the object middleware and between the
object middleware and the transport network. Inside the object middleware
the three layers of the object communication middleware that are identified
in Chapter 4 are revealed, therefore the object middleware in this figure
corresponds to the object communication middleware. Substitution of the
object communication middleware with a component execution
environment, would still lead to the same QoS user provider relations.
However, in that case the component execution environment has the role
of QoS provider.

Client
BEO

Object Interaction layer

Transport adaptation layer Transport adaptation layer

Server
BEO

Transport
network

QoS user QoS provider QoS user

QoS user

QoS provider

QoS user

O
bj

ec
t

m
id

dl
ew

ar
e

O
bj

ec
t

m
id

dl
ew

ar
e

Message distribution
l

Object Interaction layer

Message distribution layer

QoS provider

Figure 5-2 QoS
user-provider
relations in the
engineering
viewpoint

 DESIGN CONCERNS OF QOS AWARE DISTRIBUTED SYSTEMS 139

The discussion above shows that to introduce QoS awareness into an
engineering design, an infrastructure designer needs to map QoS provided
by the transport network to QoS provided by the object middleware. In
addition, an infrastructure designer needs concepts to express the QoS
aspects supported by the middleware in order to convey the middleware
QoS capabilities to the application designer.

5.1.3 Correspondence

To relate the QoS aspects of the computational and engineering designs, we
define a correspondence relation between the QoS aspects in these
viewpoints.

The required QoS (Qrequired) of a client computational object
corresponds to the Qrequired of a client BEO that acts as a QoS user of the
object middleware, in case the computational object corresponds to the
BEO. The offered QoS (Qoffered) of a computational server object
corresponds to the Qoffered a server BEO, in case the computational object
corresponds to the BEO.

Figure 5-3 shows the correspondence between computational and
engineering QoS aspects. Only the correspondence between QoS aspects is
shown, the correspondence between computational and engineering objects
has been omitted to simplify the figure.

Client
BEO

Object Interaction layer

Transport adaptation layer

Server
BEO

QoS user

QoS provider

QoS user

QoS provider

Client
Computational

Object

Server
Computational

Object

Qrequired Qoffered
Computational view

Engineering view
Corresponds

Corresponds

Message distribution layer

Qrequired
Qoffered

From the discussion above, it follows that modelling QoS aspects for the
computational and engineering viewpoint, requires appropriate modelling
concepts and that these modelling concepts are closely related through a
correspondence relation.

Figure 5-3
Correspondence
between
computational and
engineering QoS
aspects

140 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

5.2 QoS relations

From the design concerns for a QoS aware open distributed system, several
relations between QoS aspects of such a system have been identified. This
section discusses the user-provider QoS relations, QoS mapping and QoS
negotiation schemes.

5.2.1 User-provider QoS relations

The QoS agreements (Qagreed) that are established between a computational
client and server object are governed by the user-provider principle. This
principle dictates that two entities are involved in a user-provider
relationship when one entity (the user) makes use of the services providers
by other entity (the provider), and the latter does not depend on the former
[AA97]. A provider may offer its services to multiple user entities, in which
case a separate user-provider relation occurs between each user and the
provider. A user entity may be in a in a user-user relation with one or more
other user entities. Such a user-user relation requires a provider to act as an
intermediary.

An example of a user-user relationship is found in the engineering
viewpoint between a client and server BEO. In this case each BEO has a
separate user-provider relation with the DPE. The DPE acts as an
intermediary to establish a user-user QoS relation between the client and
server BEO. This user-user relation corresponds to a user-provider relation
between a client and server object in the computational viewpoint. Figure
5-4 shows the various user-provider relations and the user-user relation in
two related engineering and computational designs.

Client

Computational
object

Server
Computational

object

Client
BEO

DPE

Server
BEO

Co
m

pu
ta

ti
on

al

de
si

gn

En
gi

ne
er

in
g

de
si

gn

P U

P

U U

U - User role

P - Provider role

Figure 5-4 User-
provider relations in
computational and
engineering
viewpoint

 QOS RELATIONS 141

The user-provider relation can be applied recursively to a provider. That is,
a provider may be decomposed into one or more lower level user entities
and a lower level provider entity. The lower level user entities implement
the services of the higher-level provider using the services of the lower level
provider. To this end, the lower level user entities interact with their
higher-level neighbours (user-provider relation), with peer user entities
(user-user relation) and with the lower level provider (user-provider
relation). The recursive process of applying the user-provider relationship is
a stepwise refinement of the provider.

In the context of a QoS aware open distributed system, two or more
objects require to interact with each other at a certain quality level. These
objects rely on the services provided by a QoS aware distributed processing
environment. The QoS aware distributed processing environment acts as a
QoS provider that establishes user-user QoS relations between client and
server objects.

Recursive application of the user-provider principle results in a QoS
provider that consists of a set of lower level entities that use a lower level
QoS provider. In the case of a distributed processing environment, the
lower level QoS provider is the distributed resource platform.

5.2.2 QoS mapping

The notions of QoS at a higher and at the lower level user-provider
boundaries are different because a higher-level service considers QoS in
other terms than the lower level service. For example, a higher-level service
may consider QoS in terms of number of object interactions per second,
whereas the lower level service may express the QoS in terms of bandwidth.
This demonstrates the need for a function that maps higher-level QoS
terms to lower level QoS terms. Figure 5-5 shows the relations between a
higher and lower level QoS user and provider applied to open distributed
systems.

DPE

DRP

Middleware
Recursively apply

user-provider
principle for QoS

notion of QoS
notion of QoS

lower level
notion of QoS

mapping
Application objects

In addition to functions that map a higher-level notion of QoS onto a lower
level notion of QoS, there is also a need for functions that maintain an

Figure 5-5 QoS
user and QoS
provider relations

142 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

established QoS level. For example, delivering a reliable higher-level service
over an unreliable lower level service requires functions that are able to
detect and correct errors introduced by the lower level service. Such
functions may for instance use a Forward Error Correction (FEC)
mechanism in which senders add FEC information to data units before they
transmit them. Receivers then use the FEC information to detect and
correct any errors that were introduced during transmission of the data
unit. Another possibility would be to use error correction and detection
functions that use sequence numbering and retransmission. The TCP
protocol, for instance, uses the latter approach to provide a reliable service
on top of the unreliable IP service.

The above examples show that there are functions that primarily deal
with bridging the quality gap that exists between a higher-level service and a
lower level service. These functions complement the functions that mainly
deal with bridging the functional gap between the higher and lower level
services. For example, TCP provides functions that allow TCP service users
to establish and release connections over the connectionless IP service
(functional gap). TCP complements these functions with functions that
provide a reliable service on top of the unreliable IP service (quality gap).
The division of functions suggests that a service provider offers functional
support and an associated quality support, where each support is realised by
a dedicated set of functions. Figure 5-6 shows how the functional and
quality gap categorises the functions of a service provider.

IP_serv = <CL, UR>

TCP_serv = <CO, R>

regular
functions:
CO to CL

Unreliable (UR), connectionless (CL) IP

Reliable (R), connection-oriented (CO) TCP

Quality
functions:
UR to R

TCP
Protocol Layer

In case of an open distributed system, the functional gap and the quality gap
between application objects and the distributed resource platform must be
bridged by a QoS aware object middleware. An infrastructure designer is
responsible to design the mapping and quality functions that are part of a
QoS aware object middleware.

Figure 5-6
Functionality-quality
relations for TCP

 QOS RELATIONS 143

5.2.3 QoS negotiation schemes

A QoS agreement (Qagreed) is established at run-time as the result of
interactions between the application objects and the distributed processing
environment. This requires a negotiation of a QoS that is acceptable to the
application objects (= user) and the distributed processing environment
(= provider).

QoS negotiation is initiated by application objects or by the distributed
processing environment (DPE).

An application object that requires the establishment of a QoS
agreement typically captures these requirements in the form of a
specification. The specification may for instance indicate the bandwidth
that the object requires, the maximum latency that it wants method
invocations to be subject to, and so forth. As part of the negotiation
process, the application object may convey the specification to one or more
other application objects, to the distributed processing environment or to a
combination thereof.

When an application object conveys a QoS specification to a DPE as
part of a request to that DPE to establish the specified QoS, the object’s
specification needs to be in line with the capabilities of the DPE. That is,
the object must specify a QoS that the DPE is able to deliver. For this
purpose, the DPE typically publishes the classes of QoS that it can handle.
For instance, a provider may publish the fact that it supports a
‘Performance’ class, which gives objects the opportunity to request delay
constraints on remote method invocations. If an application object is
unaware of the DPE capabilities, it may first query the DPE to figure out
which classes of QoS are supported. The object can then select the class
that best meets the QoS it requires.

Alternatively, the DPE may initiate the establishment of a certain QoS.
This may for instance occur when the DPE includes a mobile network and a
roaming application object just got into range of that network. The DPE
may then take the initiative and advertise the different classes of QoS that it
supports as well as the cost associated with them. If the QoS classes that
become available are a better match to the application object requirements,
the object may decide to renegotiate a QoS agreement between the DPE
and one or more other application objects.

Alternative negotiation schemes
The scenarios above assume that the negotiation of a suitable QoS is
modelled as a single interaction between two or more application objects
and a DPE (multiparty negotiation). The result of the interaction is an
agreed QoS. Figure 5-7 shows an example of such a negotiation interaction.

144 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

In this example, the interaction involves application objects O1, O2 and O3,
and a DPE.

DPE

O1

O2

O3

QoS negotiation

At a lower level of abstraction, the negotiation interaction can be refined in
many ways in terms of combinations of user-user and user-provider
interactions. Figure 5-8 shows two ways of negotiating a QoS. O1 is
assumed to be the initiator in both cases.

Figure 5-8a shows a form of negotiation in which the application objects
first negotiate a suitable QoS and then involve the DPE in the process. The
figure assumes that object O1 is responsible for interacting with the DPE on
behalf of O2 and O3. The user-to-user interactions require a provider to act
as an intermediary (DPE’ in Figure 5-8a), but that this provider does not
need to be the provider that will eventually establish the QoS (DPE in
Figure 5-8a). Such an ‘out-of-band’ provider simply conveys QoS related
information between objects without interpreting it. Note that DPE and
DPE’ may be the same.

When the objects and the DPE have agreed upon a suitable QoS, the
DPE needs to reserve and initialise resources to actually establish the QoS.
The objects may subsequently commence interacting with each other, while
the DPE ensures that the agreed QoS is sustained. The QoS may be
established for each application object individually. Also note that the
configuration actions the DPE makes to its resources (e.g. to reserve and
initialise them) are implicit to the application objects (transparency
principle).

Figure 5-7 The
negotiation of a
suitable QoS as a
single interaction

 SCOPE OF QOS FUNCTIONS 145

O1

O2

O3

DPE’ DPE

QoS negotiation

DPE

O1

O2

O3

QoS negotiation
(a)

(b)

1
2

Figure 5-8b shows a form of negotiation in which the provider is involved
right from the start. When the DPE has decided that it can support a QoS
that is in line with O1’s request and with O2’s and O3’s responses, it reserves
and initialises the necessary resources and initialises the quality functions
that are required to maintain the agreed QoS. The DPE subsequently
informs the application objects of the agreed QoS. If the DPE discovers it
cannot provide a QoS that meets O1, O2 and O3’s requirements, it may start
another round of negotiation or let the negotiation terminate
unsuccessfully.

5.3 Scope of QoS functions

This section reviews the design principles used to design QoS aware
networks and applies these principles to the design of QoS aware
middleware.

Functions that realise QoS support in a distributed processing
environment are called QoS provisioning functions. The design of QoS
provisioning functions and how these functions are positioned in an open
distributed system is guided by the separation and the integration principles
[ACH98].

5.3.1 Design principles

The separation principle dictates that transfer, control, and management of
data are three functionally distinct activities [La92]. The integration principle
states that QoS must be configurable, predictable and maintainable over all
architectural layers to meet end-to-end quality of service [CCG+93].) Both
principles originate from broadband and multimedia networks, but are
applicable as guiding principles to the design of QoS support in open
distributed processing environments.

Figure 5-8 Two
ways of negotiating
a QoS (refinements
of previous figure).

146 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

5.3.2 Separation principle applied

Application of the separation principle for QoS provisioning functions
means that the transfer of data, the control of QoS and the management of
QoS are three functionally distinct activities, which should be kept separate.
In an open distributed system, the transfer of data occurs when a client
object invokes a server object. Therefore, when we apply the separation
principle to the DPE, we substitute the notion of data transfer with object
interaction. The QoS services of a QoS aware distributed system may thus
be structured into object interaction services, QoS control services and QoS
management services.
The three services have a “control” or “govern” relationship with each
other. That is, the QoS control services govern the behaviour of the object
interaction service, while the QoS management services govern the
behaviour of the QoS control services (and, indirectly, that of the object
interaction services). The QoS control services typically affect the
prediction, establishment and maintenance of QoS for individual bindings,
whereas QoS management performs the same task on a time-scale that
transcends the lifetime of individual bindings. Figure 5-9 depicts the
separation principle applied to QoS functions.

QoS functions

Apply separation
principle for QoS

Object interaction,
QoS control and QoS
management services

Object
interaction

governs QoS
control

QoS
management

governs

QoS functions

The QoS control and QoS management functions may be distributed. The
functions that provide support for QoS negotiation, for example, perform
local activities as well as distributed activities. Another example concerns
the mapping of middleware level QoS notions to DRP level QoS notions
through a database lookup. The mapping tables offered by the database may
be stored in a central location. QoS control functions distributed
throughout the DPE will perform distributed activities to access the remote
database.

5.3.3 Integration principle applied

A QoS aware distributed processing environment predicts, establishes and
maintains QoS agreements for applications objects. From the integration

Figure 5-9
Separation principle
applied QoS
functions

 SCOPE OF QOS FUNCTIONS 147

principle it follows that all the middleware parts of a QoS aware DPE (i.e.,
object communication middleware, general purpose object services,
component execution environment) must be QoS aware. That is, every
architectural component should ideally be able to predict, establish and
maintain QoS so that the overall system is able to provide QoS for
application objects.

Integration of QoS functions at the object middleware layer and QoS
functions at the distributed resource layer introduces several choices to an
infrastructure designer. At the DRP layer, QoS functions are classified in a
similar way as at the object middleware layer. Data transfer functions are
distinguished from control functions and from management functions. The
separation of QoS functions in these three categories is also determined by
the time-scale at which these functions operate. However, the time-scale of
each of these three sets of QoS functions is not necessarily the same as the
time-scale of the QoS functions found at the object middleware layer.
Therefore, an infrastructure designer must carefully choose how
middleware layer QoS functions employ DRP layer QoS functions to
achieve integrated QoS support. As a general principle we regards QoS
functions with the scope of a single binding QoS control functions, whereas
QoS functions with the scope of a set of bindings are considered to be QoS
management functions. Figure 5-10 shows the positioning of QoS functions
at the middleware layer and DRP layer. QoS functions at the middleware
layer use QoS functions at the DRP layer in various combinations.

Object
interaction

Distributed
Resource Platform

Object middleware
Data

transfer

QoS
control

QoS
management

QoS
control

QoS
management

Legenda: possible interactions of QoS functions
 governs

Figure 5-10
Integration of QoS
functions at
different layers

148 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

The QoS awareness of a communication network of a DRP may concern
individual data flows, aggregates of data flows, or to both. In case the
communication network is aware of the QoS of individual flows it can
exercise a fine grained level of QoS control for each flow, but will not scale
up to large numbers of data flows. Scalability is limited because each node
of the DRP has to maintain QoS related information about each flow. For
large numbers of flows, this implies a large memory footprint for storage
and consumes too much processing power for information look-up and
manipulation. The overall performance of the DRP is affected when too
many resources are allocated to QoS functions.

On the other hand, in case a the communication network of a DRP is
only aware of the QoS of data flow aggregates, it can exercise a coarse level
of QoS control only, but generally scales better to large numbers of flows.
After all, the DRP only needs to maintain QoS related information about
aggregates of flows, which takes substantially less storage and processing
resources for large numbers of flows.

As identified in Chapter 3, experts expect that large-scale QoS aware
communication networks will use a combination of per-flow and flow
aggregate QoS awareness. In particular, per-flow QoS awareness will be
used close to the network boundaries (e.g. in access routers and in
computing nodes attached to the network) where the number of flows is
relatively small. Per flow aggregate QoS awareness will then be used in the
core of the transport network, in particular on backbone networks.

A consequence of the integration principle is that a DPE can only offer
the same granularity of QoS control as is supported by the DRP. The DPE
depends on which QoS functions are available from the DRP and the
granularity of QoS control that these functions provide.

In practice, an open distributed system is constructed from parts
manufactured by different vendors and these parts are purchased and
owned by different organisational domains. As a result, the available QoS
support provided by a DRP depends on how it is deployed and which
hardware and software components are used to construct a DRP. An
infrastructure designer, responsible for the design of QoS functions at the
object middleware layer, must therefore find a means to deal with the
unavailability of QoS functions.

5.3.4 Determining the scope

The QoS control and management functions are actively involved in the
establishment and maintenance of a QoS agreement. The QoS support
found in object interaction functions is primarily concerned with the
transmission, receipt, processing and forwarding of request/reply messages.

 REQUIREMENTS ON QOS DESIGN CONCEPTS 149

These functions are not concerned with the establishment and maintenance
of a QoS agreement.

Examples of QoS control functions are functions for (re)negotiation of
an agreed QoS, functions for adaptation to variations in QoS, functions for
mapping between different notions of QoS (cf. Figure 5-5), tests for
resource availability functions, resource reservation and configuration
functions, and resource monitoring and reconfiguration functions. The
object interaction functions may also contain elements that influence QoS.
However, unlike the activities of the QoS control functions, the influencing
activities of the object interaction functions are limited by the policies of an
already established binding. The activities of the QoS control functions, on
the other hand, control QoS by manipulating the policies of a binding or
can involve establishment of a new binding object.

The span of control, or scope, of a QoS function is determined by the
time-scale at which the function operates. Some QoS functions are active
for each method invocation, whereas others are only active during the
binding establishment. QoS functions that operate on an even larger time-
scale get active after a sequence of bindings has been established.

Object interaction functions are tailored to an efficient transfer of
request and reply messages and efficient processing of these messages on
the client and server side. The QoS actions of the object interaction
functions must take place on the same time-scale as a method invocation.
The QoS control functions operate at the time-scale of binding
establishment. QoS management functions operate at the time-scale of
multiple binding life cycles.

An infrastructure designer needs to determine the scope of a QoS
function as this determines how efficient the QoS function must be
realised. Obviously, the smaller the time-scale at which a QoS function
operates the more efficient, i.e. with as little overhead as possible, the
function must be engineered.

5.4 Requirements on QoS design concepts

The design principles, presented in the previous sections, guide the design
of QoS functions. These principles must be augmented with a refined set of
concepts that facilitate the exchange of designs between application
designers and infrastructure designers. QoS providers use these concepts to
advertise and express their QoS capabilities to potential users. We need
design concepts to be able to specify the required, offered and agreed QoS
and formulate the following requirements on these design concepts.

150 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

5.4.1 Extensible

As the result of the integration principle, the QoS support that a DPE can
offer depends on the QoS support offered by the communication network
and computing systems. The network and computing systems may be
owned by different organisational domains and may vary in the level and
granularity of QoS support. In addition, new QoS functions can become
available as organisations upgrade their network, their computing systems
or both.

To cope with these differences in a particular deployment of an open
distributed system, the design concepts that model QoS aspects must be
extensible. This allows for the design of new QoS capabilities as they
become available to the distributed resource platform. An extensible set of
QoS design concepts caters for the design of future QoS capabilities.

5.4.2 Composable

When new QoS capabilities become available from the DRP to the
infrastructure designer, existing models of QoS capabilities of the object
middleware do not have to become obsolete, but should rather be
incorporated into a new model of the middleware QoS capabilities.
Consequently, QoS designs must be composable, i.e. new QoS designs can
be constructed from existing designs.

5.4.3 Verifiable

The concepts that an application designer uses to create required and
offered QoS designs must be checked against the QoS concepts created by
the infrastructure designer. An incomplete or unsupported QoS design is
invalid and should be detected by the DPE. To let a DPE detect and
possibly reject an invalid application layer QoS design, a QoS design must
be verifiable.

A valid QoS design means that it is positively verified against some QoS
type and that this QoS type is supported by the DPE. This ensures that the
DPE can support the requested application layer QoS design to at least
some degree. A QoS type is a predicate on some QoS design.

5.4.4 Suitable run-time representation

QoS design concepts, like any other design concepts, are conceptual models
manipulated in the mind of a designer. For specification purposes the QoS
design concepts must be represented in a way that suits infrastructure
designers and application designers. In addition, a QoS design also needs a
suitable run-time representation. The run-time representation is managed
by the DPE and is used to exchange QoS specifications between application

 QOS DESIGN CONCEPTS 151

objects and the DPE. The suitability of a run-time representation of a QoS
design is determined by several factors.

A run-time representation must be efficient in terms of memory usage
and processing complexity. This is especially important when a QoS
specification is accessed by QoS functions that operate at the time-scale of
an object interaction. Access to a QoS specification must not introduce a lot
of overhead.

A run-time representation should be compliant with existing software
engineering practices and standards where possible. Use of existing
standards enables an infrastructure designer to re-use existing design
patterns for the implementation of the run-time representation. In
addition, application designers may use existing tools to create QoS
specifications.

5.5 QoS design concepts

The set of QoS design concepts presented in this section meets the
requirements presented in the previous section. The approach is to define a
meta-model, which is derived from the OMG MOF model, from which
QoS designs can be developed.

The definitions found in the ISO/ITU QoS standard [ISO X.641] are
adopted as a starting point to derive the meta-model. These concepts have
been introduced in Chapter 3. Some of these definitions are interpreted
and lead to our own set of basic QoS concepts.

5.5.1 ISO QoS concepts

The definitions of user requirement, QoS category, QoS characteristic and
QoS requirement are adopted.

A user requirement is a quantifiable quality aspect of the interactions between user
entities that are needed by (one of) these entities, to enable them to achieve their
interaction objective, and including the required quantity of the aspect.

User requirements are defined in the scope of a user entity. By using these
requirements, a user entity can identify and express the quality needs for
their interactions, in a way independent from the means that realize these
interactions. This means that the user requirements are of concern to the
user-user relation. It also means that these requirements are independent
of the QoS capabilities of a provider.

Definition 12 User
requirement

152 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

However, to enable provisioning of QoS, these user requirements have
to be formulated in terms of provider-oriented concepts, i.e. QoS
characteristics and QoS requirements, which will be defined a little later.

User requirements are aggregated in the following definition:

A QoS category is a group of user requirements that leads to the selection of a set
of QoS requirements..

The QoS category is the user perspective on a set of requirements for QoS
support, which are independent of the QoS capabilities of the provider.
When these requirements are expressed in terms of the QoS capabilities
supported by a provider, they are referred to as QoS requirements. A QoS
requirement is expressed in terms of a QoS characteristic.

A QoS characteristic is a quantifiable aspect of QoS, which is defined
independently of the means by which it is represented or controlled.

A QoS characteristic specifies a particular quality aspect of the capability of
a provider, independently of the means by which it is represented or
controlled. A QoS characteristic is also quantifiable. The latter enables the
matching of an offer to a demand using computational means. It also
enables the mappings of QoS specifications. QoS characteristics at the
lower interface (i.e. the DRP boundary) are for instance delay, bit-rate and
probabilistic transmission error rate. Characteristics at the upper interface
(i.e. the middleware to application boundary) are for instance rate,
accuracy, freshness and urgency.

A QoS requirement is QoS information that expresses part or all of a requirement
to manage one or more QoS characteristics, e.g. a maximum value, a target, or a
threshold

A QoS requirement is always associated with one or more QoS
characteristics. It represents the needed value or range of values of the
associated characteristic, and also the qualifiers of these values, e.g. the
upper-/lower-bounds or the probabilistic properties of the corresponding
characteristic.

QoS Classes
From the provider perspective, it is useful to group the supported QoS
characteristics. This grouping allows association of QoS requirements with a
set of characteristics that a provider regards as a logical unit. As was
mentioned earlier, a provider may advertise its QoS capabilities. In analogy

Definition 13 QoS
category

Definition 14 QoS
characteristic

Definition 15 QoS
requirement

 QOS DESIGN CONCEPTS 153

to the way many network or transport service providers make their QoS
capability known and available, we define the concept QoS class.

In ATM networks, a service class (also called service category)
represents the QoS capability of this network. Examples are the classes
CBR (Constant Bit Rate), VBR/NRT (Variable Bit Rate - Non Real Time),
and ABR (Available Bit Rate). These classes are defined in terms of QoS
characteristics like CLR (Cell Loss Ratio), CTD (Cell Transfer Delay), and
MTD (Minimum Cell Rate).

The previously given examples motivate the definition of the concept
QoS class.

A QoS class is the QoS capability of a service or a set of services, defined in terms of
QoS characteristics and the corresponding ranges or values that can be supported
by the provider.

A QoS class defines the dimensions of QoS aspects and includes the domain
of values that are supported by a service provider. Figure 5-11 shows the
geometrical representation of a class as a region in a space spanned by the
QoS characteristics

QoS char_2

QoS char_3

QoS Class A

QoS char_1

QoS_char_1_max

QoS_char_1_min

QoS char_5

QoS char_6

QoS char_4

QoS Class B

The QoS characteristics do not need to form an orthogonal basis, i.e. QoS
characteristics may have some interdependency. The ranges or values of the
characteristics that are supported by the provider determine the region in
this space. The dimension and shape of the region of a QoS class expose
essential properties of the providers QoS capability.

As opposed to QoS categories, QoS classes are provider-oriented, in the
sense that they represent the capabilities of a provider and are meant to
accommodate the user oriented QoS categories.

Definition 16 QoS
class

Figure 5-11
Examples of QoS
classes, associated
characteristics and
supported ranges
or values

154 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

5.5.2 Additional basic concepts

The ISO/QoS definitions offer a generic set of concepts for the design of
QoS aspects. Additional concepts are needed that relate the QoS design
concepts to object oriented concepts. The concepts presented below are
adopted from the QoS Modeling Language (QML) [FrKo98]. Notions
defined in QML are:
– QoS dimension;
– Direction of a QoS dimension;
– QoS category;
– QoS contract;
– QoS contract type.

For each of these notions we discuss the relation with the definition
presented in the previous section

The term QoS dimension is closely related to a QoS characteristic, as it
also specifies a quantifiable aspect of QoS. The main difference is that a
QoS dimension has a number of concrete attributes such as a name, a
domain of values (e.g. non-negative numbers) and the units of the value
(e.g. milliseconds, kb/sec, or per hour). Examples of QoS dimensions are
throughput, rate, delay, failure rate and integrity level. For each of these
dimensions, the domain of values, the unit of a value and the direction must
be specified.

The direction of a QoS dimension can be increasing or decreasing. An
increasing QoS dimension means that higher values are better. An example
of an increasing QoS dimension is rate, expressed as number of invocations
per second. For a decreasing QoS dimension a lower value is considered
better. Delay is an example of a decreasing QoS dimension.

QoS dimensions that are grouped define a QoS category. Examples of
QoS categories are performance, security or availability. Each QoS category
consists of one or more QoS dimensions. A QoS category resembles an ISO
QoS class, as it is defined in terms of QoS dimensions and the
corresponding ranges or values that can be supported by the provider.

A provider expresses its QoS capabilities in terms of one or more QoS
categories that it supports. A QoS category concerns not the individual
agreements that have been made, e.g., QoS agreements between a set of
application objects and the DPE. A QoS category defines the potential
space for the establishment of QoS agreements. Actual QoS agreements that
are established depend upon the availability of resources from the provider.
Such an agreement is also referred to as a QoS contract between a user and a
provider.

A QoS category can be regarded as a predicate, which must hold for all
QoS contracts that a provider makes. From this perspective the QoS

 META-MODEL CONCEPTS 155

category defines a QoS contract type. Figure 5-12 shows an example of a
Performance contract type in QML. This contract type supports delay and
throughput as dimensions.

type Performance = contract {
delay: decreasing numeric msec;
throughput: increasing numeric mb/sec;
};

A contract type specification is a way for a provider to express its
capabilities. A contract type identifies and defines a QoS class. A QoS
contract is a constraint for a given QoS class, i.e., it imposes constraints on
the dimensions defined in the contract type. If a contract type is considered
a template for the construction of valid contracts, a contract is then an
instantiation and parameterisation of a contract type. For an example of a
contract see Figure 5-13.

somePerformance = Performance contract {
delay < 180;
throughput > 2;
};

The contract above specifies that the delay dimension should be less than
180 ms and the throughput should be larger than 2 mb/sec. The contract
does not specify if this is a required, offered or an agreed QoS.

5.6 Meta-model concepts

This section discusses the meta-model concepts that an infrastructure
designer and application designer use to develop QoS aware middleware
and QoS aware applications, respectively. The notions of QoS contract
types and QoS contracts are discussed. The QoS contract types are designed
by an infrastructure designer and the QoS contract by an application
designer.

5.6.1 QoS contract types

The QoS design concepts presented before are captured in a model that
consists of a set of classes and associations between these classes. This
model is a meta-model in the sense that QoS designs can be instantiated
from it. Our meta-model is an instantiation of a standardised meta-meta-
model, which is known as the OMG MOF model.

Figure 5-12 A QML
performance
contract type

Figure 5-13 A QML
performance
contract

156 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

The meta-model for QoS designs consists of two parts: a part that
defines QoS contract types and a part that defines QoS contracts. The latter
part also relates the contract to its contract type. This section discusses the
first part that focuses on the QoS contract types.

A contract type contains zero or more dimensions. The contract type
and the dimension are defined as a class. A contract type has a name, a major
version and a minor version number as attributes. The name of the contract
type makes it easier to refer to the contract type and the version numbers
enable a provider to offers multiple versions of the contract type.

The attributes of a dimension are a direction, dimension type and a
description of the unit. The direction of a dimension is increasing or
decreasing. The dimension type defines the domain of values that apply to a
dimension. The dimension type is defined as a TypeCode, which allows the
reuse of the types defined in the CORBA::TypeCode system. A dimension
may allow certain constraints or disallow them. A boolean attribute
allowMultiConstraint indicates which constraints are supported for that
dimension. The purpose of a multi-constraint is discussed in the part that
defines QoS contracts.

The relationship between a contract type and it dimensions is modelled
using the container-contained pattern. The container-contained pattern is
also found in the CORBA Interface Repository specification and is a
variation on the Composite design pattern [Ga+95]. Essentially, the
container-contained pattern provides a design solution in case multiple
objects must be grouped together by a single object and all objects, whether
single or grouped, must be treated in the same way. The solution consists of
an abstract container object that contains a set of abstract contained
objects. The container itself can also be contained in another container.
This allows for a potentially infinite level of containment.

The container-contained pattern is used to model the relationship
between a contract type and a dimension. As a result, a dimension is a
contained object and a contract type is a container object. The benefit of
the pattern is that multiple contract types can be contained in a larger
contract type. This enables the composition of contract types from contract
types that already exists.

Models instantiated from the meta-model are constrained so the validity
of these models can be verified. The meta-model requires that a dimension
can only be contained in a contract type. This constraint is required as the
container and contained classes are also used in the part of the model
concerning the contracts.

The meta-model classes and their relations are represented as a UML
class diagram. Figure 5-14 shows a UML specification of the meta-model
for QoS contract types.

 META-MODEL CONCEPTS 157

The QoSContractType meta-class and associated meta-classes are used to
validate a QoS contract.

5.6.2 QoS contracts

This section discusses the part of the meta-model that concerns the QoS
contracts. A QoS contract consists of a set of constraints on QoS
dimensions. A contract must be associated with a contract type. A contract
is only valid when it defines constraints for dimensions that have been
defined for its associated contract type.

A constraint on a dimension is defined in terms of an operator and a
parameter. The constraining operators are taken from the set {=, <, >,
=<, >=}. The parameter of a constraint must match the dimension type
attribute as found in its corresponding dimension. An example of a
constraint on a dimension is “delay < 120”, assuming there is a dimension
with name delay and with a numeric dimension type code.

In some situations the set of five constraining operators is not sufficient.
The constraint governs all interactions that are subject to the QoS contract
and are therefore considered hard constraints. In the example above the
constraint requires that every interaction has a delay less then 120. It may
be that the user does not want to set such hard requirements, or that a
provider does not support hard guarantees. In this case a statistical

Figure 5-14 Meta-
model for QoS
contract types

158 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

constraint is used. An example of a statistical constraint is “delay < 120 for
at least 80% of the cases”.

A statistical constraint is a special case of a single constraint. It is
common to require multiple statistical constraints for a single dimension.
For example, a constraint on the dimension delay could be “delay <120
for at least 80% of the cases and average delay < 200”. With this constraint
an occasional delay may be longer than 120, but on all invocations the
average delay should be less than 200. Such a constraint is captured by a
multi-constraint. A multi-constraint has a statistical operator, which is taken
from the set {percentile, frequency, mean, variance} and a statistical
parameter. Statistical constraints can only be contained in a multi-constraint.

The container-contained pattern is again used to model the relationship
between a contract and a single constraint and in a similar way the relation
between a multi-constraint and a statistical constraint. The meta-model
constraints are formulated in such a way that a contract may contain single
constraints and multi-constraints, while a multi-constraint may contain
statistical constraints.

The meta-model classes and their relations are represented as a UML
class diagram. Figure 5-15 shows a UML specification of the meta-model
for QoS contracts.

 EVALUATION AND CONCLUSION 159

5.7 Evaluation and conclusion

The meta-model discussed in the previous sections offers a solution to the
requirements on the QoS design concepts. The requirements presented in
section 5.4 are evaluated.

5.7.1 Extensible

The extensibility requirement states that when new QoS capabilities
become available from a provider, the design concepts must be able to
capture this.

The extensibility requirement is met through the meta-model approach.
The meta-model enables the construction of contract types that represent
the QoS capabilities of a provider. A QoS contract type represents a
potential space for the establishment of QoS agreements. The meta-model
offers the designer the freedom to choose this space according to the

Figure 5-15 Meta-
model for QoS
contracts

160 CHAPTER 5 MODELS FOR QOS AWARE MIDDLEWARE

capabilities of a provider. Construction of new contract types enables the
extension of this space.

5.7.2 Composable

The composability requirement states that existing QoS designs should be
reused in new designs.

The composability requirement is met through the container-contained
pattern. Through this pattern a contract type can be a container for QoS
dimensions and also a container for other contract types. This offers a
designer the freedom to compose new contract types using existing contract
types.

5.7.3 Verifiable

The verifiability requirement states that a QoS specification must be
checked for validity. A QoS specification is valid if it is positively verified
against some QoS type and that the provider supports this QoS type.

The verifiability requirement is partially met by the meta-model. The
validity of a QoS contract can be verified by checking it against its contract
type. This means that for all the dimension constraints found in the QoS
contract a dimension must be defined in the contract type. In addition, the
type code of a dimension must match the parameter type of a constraint.

Verification of the support of a QoS type by a provider is not facilitated
by the meta-model, but is determined by a provider at run-time.

5.7.4 Suitable run-time representation

The suitable run-time representation requirements states that a run-time
representation must be efficient in terms of memory usage and processing
complexity and that the run-time representation should be compliant with
existing software engineering practices and standards.

Again, the meta-model offers a solution to this requirement. The meta-
model does not prescribe any run-time representation. The OMG has
standardised two mappings from a meta-model to IDL and from a meta-
model to XML. These standardised mappings enable the representation of a
QoS design in a manner that is compliant with existing design tools, thus
enabling a designer to manipulate a QoS design in a tool of choice.

Efficiency of the run-time representation is an implementation issue for
the infrastructure designer and can be optimised where needed. For
example, when a QoS contract is represented as an XML tree, an efficient
DOM tree implementation must be chosen to minimise the overhead of
DimensionConstraint parameter lookups.

Chapter 6

6. Design of a QoS provisioning
service

This chapter presents the design of a general purpose service that provides
QoS support. This service is called the QoS Provisioning Service (QPS)
[FaHa01, Ha00, HFG01, FHLS02]. QPS enables application objects to
specify a QoS contract and associate client and server interfaces with these
contracts. A binding between a client and server object that have a QoS
contract is subject to the establishment of a QoS agreement. QPS acts as a
broker between the application level QoS requirements and the available
QoS mechanisms of the distributed resource platform.

QPS supports the QoS aspects of a design of a distributed application,
according to the QoS modelling concepts discussed in chapter 5. QPS
ensures that QoS agreements are established and maintained during the
life-time of the binding [BHP+00].

This chapter is organised as follows. Section 6.1 presents an overview of the
features of QPS and the services it provides. Section 6.2 describes QPS
from an engineering viewpoint. Section 6.3 shows how the generic design
of QPS has been transformed to a specific implementation for a CORBA
context. Section 6.4 discusses some of the design decisions that were made
for the CORBA implementation of QPS. Section 6.5 introduces QIOP,
which is our protocol that ensures performance contracts between a
CORBA server object and its clients. Section 6.6 describes an experiment
with QIOP implementation and demonstrates the performance benefits of
QIOP over the standard CORBA protocol. Section 6.7 presents conclusions
and identifies issues for further investigation.

162 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

6.1 Overview of QPS

This section presents an overview of the QoS provisioning service (QPS). It
describes the service that QPS offers to computational objects and the
realisation of this service, discussing the QPS lifecycle, a framework for QoS
negotiation and a framework for QoS control.

6.1.1 Service description

QPS is a general purpose object service that manages the life cycle of a QoS
aware binding. In the computational viewpoint, QPS is modelled as a
computational object that client and server computational objects use to
establish a QoS aware binding that supports the QoS requirements for their
interactions.

QPS provides application level support for QoS contracts. QPS shields
application objects from QoS contract negotiation and the mapping of QoS
agreements to internal actions on the QoS functions and mechanisms of the
object middleware or the DRP. QPS also shields application objects from
the functions and mechanisms needed to maintain a QoS agreement.

QPS has been designed so that it can be extended. When new functions
and mechanisms for QoS enforcement and QoS control become available,
these functions and mechanisms can be added to QPS. New contract types
can be made available to the application developer. Establishment and
maintenance of QoS contracts derived from these new contract types are
the concern of QPS and not of the application developer.

QPS adapts to the dynamic availability of processing, storage and
communication resources. QPS monitors actual QoS levels achieved by the
middleware and DRP and takes counter actions in an attempt to maintain a
QoS agreement. However, if too many resources of the DRP are consumed
by components that are outside the control of QPS, a QoS agreement can
be violated and the associated binding is released. In this case, QPS will
notify the application objects.

QPS is configurable through policies. The infrastructure designer is
responsible for defining the mapping of QoS agreements to the QoS
functions and mechanisms provided by the DRP. Negotiation of QoS
agreements can also be configured through policies. The infrastructure
designer provides a number of negotiation strategies. A deployment
designer decides which strategy is used for a specific deployment of QPS.
Finally, the adaptation policies of QPS are configurable. These policies are
concerned with the strategies that QPS employs to control the QoS levels
achieved by the middleware and DRP.

 OVERVIEW OF QPS 163

6.1.2 QoS aware binding lifecycle

The purpose of the QoS provisioning Service (QPS) is to control the
resources of the distributed resource platform (DRP) in such a way that
some agreed QoS (Qagreed) is established and maintained for the lifetime of
the binding. This agreed QoS is the result of a matchmaking process
between the offered QoS (Qoffered) of the server object and the required QoS
of the client (Qrequired).

An application object expresses its offered or required QoS as a QoS
contract according to the concepts defined in chapter 5. QPS takes the QoS
contract of a client and a server object as input to establish an agreed QoS.

A QoS agreement is valid for a single binding between a client and a
server object. A binding that is subject to a QoS agreement is a QoS aware
binding. A QoS aware binding consumes resources from the distributed
resource platform. Therefore, a QoS aware binding is only created upon
demand and discarded when the client does not need it anymore or when
influences outside the control of QPS force the release of a binding.

The scope of QPS is a single binding between a client and a server
application object. Figure 6-1 shows the five life-cycle phases of QPS of a
client-server binding. The lifecycle phases are inform, negotiate, establish,
operate and release.

 2. Negotiate

3. Establish

4.Operate
5. Release

1. Inform
Server Client

QofferedQrequired

Qagreed

In the inform phase the client specifies its Qrequired and the server specifies its
Qoffered. During the negotiate phase, QPS initiates a three-party negotiation
between the client, the server and the DRP to reach an agreement. A
successful negotiation results in a Qagreed which is then associated with the
binding. During the establish phase, QPS commits the resources that have
been allocated during the previous phase. These can be communication,
storage and processing resources.

Figure 6-1 QoS
support lifecycle in
QPS

164 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

Once sufficient resources have been allocated to the binding, Qagreed must
be maintained, to support QoS control transparency. Which means that
QPS corrects drifting quality levels, for example, by re-allocating system
resources. This is the operate phase. Finally, when the client does not
further need the binding or when radical changes in the DRP make it
impossible to sustain Qagreed, the system resources are released.

In the remaining sections we focus on phase 2,3 and 4. For the
realisation of phase 1 QPS uses the meta-model concepts discussed in
Chapter 5. Realisation of phase 5 is a matter of proper administration of
the resources allocated to a binding to be able to release them.

6.1.3 Framework for QoS negotiation

The design of QPS for phase 2 is constrained by two conflicting forces: a)
the design has to be flexible enough such that we can incorporate various
negotiation strategies, b) the design has to be stable enough to ensure
robustness and portability.

Bond and Gasser [BoGa88] regard a negotiation as a process by which
conflicts (with respect to resource allocations) may be resolved. However,
we share the view presented by Dillenbourg and Baker [DiBa96] that the
existence of a 'conflict' is not essential to the definition of negotiation. All
that is basically required is that the interacting objects possess the mutual
goal of achieving agreement, with respect to some set of negotia, or entities
of negotiation. Usually, several dimensions of negotia are negotiated
simultaneously.

Negotiation is an activity that must take place after the deployment of
application components. Establishment of QoS agreements at design time it
too limited for open distributed systems. In some cases the QoS level of
application components that execute on top of a real-time operating system
is calculated off-line. Off-line schedulability analysis [XuPa90, AbSh95] is
used to verify that the resources are sufficient to meet all QoS constraints.
In a distributed system it is not possible to calculate QoS levels off-line, as
this requires worst-case conditions to be known at design time.

To establish a QoS agreement, an agreement must be reached between
the client application object (represented by a client BEO), the server
application object (represented by a server BEO) and the DRP. This
agreement is reached through a negotiation process that is performed
according to a negotiation model.

Negotiation model
In our QoS negotiation model, an object has either a client or a server role.
We associate a certain QoS level with a binding between a client and a

 OVERVIEW OF QPS 165

server. The binding is a binary relation denoted as b(c,s), where c is a client,
and s is the server.

The QoS level of a binding depends on several factors, such as the
network situation, the object implementation or other resources that the
object depends on. The client specifies a required QoS level denoted as
Qrequired(c) for a binding b(c,s). The server is associated with the offered QoS
level, denoted as Qoffered(s). Associating a required or offered QoS for objects
is mandatory, both on the client-side and on the server-side. The QoS level
that is associated with the binding is a result of a negotiation between the
client and the server. The negotiation is the process of reconciling the
potentially diverging Qrequired(c) and Qoffered(s), for a binding b(c,s). A successful
negotiation results in an agreed quality level Qagreed(c,s) also denoted as
Qagreed(b) where b(c,s).

Negotiation strategies
In [Ko97], several QoS categories are identified, such as reliability,
performance, availability and security. An infrastructure designer can define a
QoSContractType for each of these categories in accordance with the QoS
meta-model described in Chapter 5.

Consider the performance category as an example to illustrate
negotiation strategies. A QoS contract type that has dimensions delay and
rate represents the performance category. Delay is the time that elapses
between the request and response of an invocation and rate is the number
of invocations that are responded by a server within a time unit. To be able
to compare different quality levels, an ordering “better than” is necessary
for the value domains of dimensions. The rate dimension has an increasing
direction type, which means that higher values for rate are better than
lower values. The delay dimension has a decreasing direction type, which
means that lower delay values are conceived as better QoS. The direction
type determines how QoS dimensions should be compared.

Negotiation can take place between objects that are going to be bound
together. The negotiation process is defined per dimension. It starts with
the two parties having a required and an offered QoS of the same
dimension. The required and the offered quality levels are compared, and
an agreed quality level is calculated. An agreement can only be reached if
there is a common range of values between the dimension of the offered
and required QoS. The QoS agreement is then used as a target level for the
binding that must be maintained during the operate phase.

Calculation of the agreed quality level can be performed according to
different strategies. It may also take into account other conditions such as a
price limit or alternative Qrequired specifications. The default strategy is
straightforward and defines the agreed quality level to be the Qrequired(c),
where Qrequired(c) is not better than Qoffered(s), for a binding b(c,s). Negotiation

166 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

fails when Qrequired(c,s) is better than Qoffered(s), or if the server provides no
offered QoS. QPS allows for the configuration of alternative negotiation
schemes through the strategy pattern [Ga+95].

Negotiation framework
We have identified two sub phases during the negotiation phase: a) a server
BEO negotiates with the object middleware, in order to achieve an offered
QoS, b) a client BEO initiates a negotiation using its required QoS and the
offered QoS (that results from sub phase a) to converge to a QoS
agreement.

Negotiation in sub phase a) starts with the Qoffered that a server object gets
assigned by the application designer during the computational design. A
Qoffered is what a server object intends to offer to a client object. In this phase
the server object acts as a QoS user and the middleware as a QoS provider.
The middleware decides whether sufficient resources are available to
support the Qoffered of the server object.

In a more elaborate scheme, an application designer may provide several
alternative Qoffered specifications, each with an associated benefit or utility
value. Such a specification seems suitable as a starting point for graceful
QoS degradation in case of system overload. A QoS negotiation algorithm
for this approach is discussed in [AAS02]. However, for QPS we assume a
boolean approach, in which the middleware either accepts or rejects a Qoffered

from a server object.
Negotiation in sub phase b) starts from a client that requests a QoS

agreement that satisfies the Qagreed, Qoffered and the available resources that the
object middleware can assign to the binding between that client and server
object.

The client takes explicit actions to initiate the negotiation. The
negotiator is an entity that implements a set of algorithms that determine
the values of QoS parameters and resource reservations acceptable to all
involved parties. The negotiator is an entity that is inspired by the
whiteboard negotiation approach [PTM92], where a whiteboard acts as a
central repository for the whole negotiation phase (see Figure 6-2). It
contains the configured problem-solving strategy as well as the knowledge
base, and all objects involved in the negotiation access it.

 OVERVIEW OF QPS 167

Negotiator

Client

Server

Middleware

The whiteboard is so named to distinguish it from the traditional view of a
blackboard [Ni86]. As in the blackboard architecture, negotiation objects
contribute incrementally to the whiteboard in building a solution (i.e., a
problem solver). In contrast to blackboard systems, however, the
negotiating objects cannot access the whiteboard opportunistically. Instead,
access must follow a fixed order of events.

Negotiation steps
QPS assumes that a QoS specification can be decomposed into atomic
expressions, each related to one or more QoS dimensions. Such
decomposition allows a specific negotiator to extract information from the
QoS specification that is relevant to the QoS service it belongs to.

The generic negotiator performs negotiation in the following steps
(Figure 6-3):

(a) Collect required and offered QoS specifications;
(b) Find relevant specific QoS negotiators;
(c) Delegate the negotiation to the specific negotiators;
(d) Assemble the resource reservations of the specific negotiators;
(e) Perform reservations;
(f) Assemble the agreed QoS specification;

Figure 6-2 The
negotiator is the
whiteboard for
negotiating parties

168 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

Find relevant
specific

negotiators

Validate Qrequired
and Qoffered

Match Qrequired

and Qoffered

Obtain Qagreed

Claim resources

Do
reservations

Qagreed

Specific
negotiators

Generic negotiator

In Figure 6-3, the generic negotiator delegates the QoS specification to the
specific negotiators. A specific negotiator is responsible for validating the
part of the QoS required and QoS offered that is related to QoS service
associated with this specific negotiator. A specific negotiator performs
matching of the relevant parts of the required and offered QoS and the
result is a specific agreed QoS. Once a specific agreed QoS is reached, the
specific negotiator claims the resources needed to achieve the agreed QoS
level. These claims prepare reservation structures that contain all necessary
information for establishment of reservations. The generic negotiator uses
these reservation structures to perform the actual reservations.

6.1.4 Framework for establishment and maintenance of QoS

Phase 3 and 4 of the binding lifecycle are concerned with the establishment
and maintenance of a QoS agreement. This section introduces our
approach and subsequently discusses a specialisation of a generic control
system model that coincides with the operate phase of the QoS support life
cycle.

Figure 6-3
Negotiation
algorithm

 OVERVIEW OF QPS 169

Control framework for QoS provisioning
The design of QPS for phase 3 and 4 of the QoS support lifecycle is
constrained by two conflicting requirements: a) the design has to be flexible
enough such that it enables us to experiment with different QoS strategies
and cope with different kinds of application demands; and b) certain
aspects of the design have to be fixed so that the robustness and portability
of the design can be guaranteed.

For this reason we start off with a generic control system model, which
we specialise, such that it applies to QoS-control of a QoS agreement
during the operate phase. This specialised model forms our framework, i.e.
the fixed part of our design. Although some decisions are made with
respect to the scope of control, the framework is independent of any
specific QoS-control strategy or algorithm. Therefore, different solutions
can be compared and evaluated with this framework.

A possible way to arrive at a complete QoS-control design, e.g. for a
specific object middleware platform, is to apply a synthesis-based approach
[Te00]. In this approach, requirements are converted into technical
problems. For each technical problem, possible solution techniques are
sought. The candidate solution techniques are then compared with each
other from the perspective of relevance, robustness, adaptability and
performance. Whenever a suitable solution technique is found, the
fundamental abstractions of this technique are used to refine the design.
This process is repeated until all the problems are considered and solved.
Finally, the architectural abstractions are specified and integrated within the
overall framework. Since solution domain knowledge changes smoothly,
this approach provides us with stable and robust abstractions with rich
semantics. The discussion of technical issues in section 6.1.5 follows this
approach.

Generic control system
The main objective of the QPS operate phase is to establish and maintain an
agreed QoS that satisfies the demands of applications and the capabilities of
available resources. This objective can be fulfilled by a control system in two
phases: (a) establishing an agreed QoS corresponds to setting up the desired
parameters of the control system; and (b) enforcing the agreed QoS can be
realised by controlling actions. The control system must be naturally
embedded in the middleware system. Our QoS-control framework should
therefore be synthesised from the fundamental abstractions of middleware
and control systems.

A control system [Le90, KiGi87] consists of a controlled system in
combination with a controller. The interactions between the controlled
system and the controller consist of observations and manipulations
performed by the controller on the controlled system.

170 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

Figure 6-4 shows the elements of a control system.

Controlled
System

Controller

observationmanipulation

input output

Control System

control
information

Environment

The generic control model abstracts from the type of observation and the
type of manipulation that can be employed by the controller on the
controlled system. The relationship between the controlled system and the
controller can be realised using different strategies. With a feed-forward
control strategy manipulation through control actions is determined based
on observation of the input to the controlled system. The controller steers
the controlled system in such a manner that the controlled system delivers
the desired behaviour. A feed-back control strategy can be applied for
behaviour optimisation. According to this strategy, measurements of the
output delivered by the controlled system are compared with a desired
behaviour (a reference) and the controller uses the difference between them to
decide on the control actions to be taken.

QoS-control system
In QoS aware middleware, the controlled system is the middleware
functionality responsible for the support of interactions between application
objects, while the controller provides QoS control capabilities and is
embedded in the middleware platform. Here, the environment represents
the operational context of the middleware, which consists of application
objects with QoS requirements and QoS offers. The middleware platform
encapsulates the computing and communication resources at each
individual processing node, which may be manipulated in order to maintain
the agreed QoS.

Figure 6-4
Elements of a
control system

 OVERVIEW OF QPS 171

Figure 6-5 shows the specialisation of the generic control model for
controlling the QoS provided by a middleware.

Middleware platform

Sensor

probe

difference

Decider

Translator

probe

observation

Comparator

Interpreter

Applications

Computing and communication resources

control strategy

control action

measurement
(QoS state)

input output

Actuator

reference agreed
QoS

QoS reference
base

In Figure 6-5 we identify two symmetrical structures, one for handling QoS
measurement concerns and another for handling QoS manipulation
concerns. A probe is a point of observation or manipulation that is available
or must be planted in the controlled system, i.e., the middleware platform.
Many probes may be planted in the controlled system, for both observations
and manipulations.

A sensor is a mechanism that uses a probe to obtain observations.
Multiple sensors may be used in a control system, e.g., one for each probe
type. Observations can only be useful if they are interpreted in terms of
measurements that can be compared with the reference, i.e., they are
represented using the same units and have the same semantics. For
example, observations can be the moments in time of the sending of a
request and the receiving of the corresponding response. The needed
measurement could be the average response time, which implies that the
average of the difference between the moments in time observed is

Figure 6-5 QoS-
control system in a
middleware context

172 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

calculated in order to generate the measurement. An interpreter performs
this calculation. In general, the interpreter combines observations, which
could even come from different sensors, in order to generate
measurements.

A comparator compares the measurement and an associated reference
value (an agreed QoS measure), determining the difference. A decider gets
the difference and applies some algorithm to establish a control strategy,
consisting of the objectives to be reached in this execution of the control
loop. The control strategy must be translated in a collection of control
actions, i.e., manipulations of the controlled system. A translator is
responsible for translating the control strategy to a collection of control
actions. An actuator schedules the control actions such that they are carried
out using one or more probes. Multiple actuators may be used in a control
system, e.g., one for each type of probe. The translator distributes the
control actions among the actuators, realising in this way the control
strategy.

Since we intend to use our design mainly to investigate mechanisms for
controlling QoS through the middleware platform, we have not introduced
any facilities that control applications objects. Furthermore, controlling
applications requires either specific knowledge about the applications,
which prohibits any general solution, or it requires the applications to offer
certain adaptability or manipulation interfaces, which imposes a serious
restriction on the applications that could use our QoS provisioning service.

6.1.5 Technical issues

This section identifies and elaborates the technical issues that have to be
addressed in order to realise the QoS control design.

Identification of requirements
Referring to Figure 6-5, the following requirements and problems can be
identified when developing a more concrete QoS-control design, e.g., to
suit a specific application or system environment:
1. Collecting observation values.
2. Interpreting the observation values to create a measurement.
3. Determination and representation of the difference.
4. Executing a controlling algorithm.
5. Applying a control strategy and performing middleware manipulations.
6. Feasibility of the overall control loop.

We explore these requirements in the sequel, and propose some possible
solutions and solution strategies.

 OVERVIEW OF QPS 173

Collecting observation values
In order to collect observation values we have to develop probes and
sensors. Probes connect the middleware to the control mechanisms and are
independent of the actual measurements. Sensors collect the actual
measurements and they typically depend on the amount and types of data
that are collected.

The fundamental requirement on the probes and sensors is that they
must have a minimal impact on the middleware platform. More detailed
requirements are:
1. Minimal impact on the code: the insertion of probes into the middleware

platform should have little or no impact from the manageability point-
of-view. In other words, we need non-invasive addition of probes. A
special case is the run-time insertion and removal of probes, which may
also have beneficial performance consequences.

2. Mapping probes to the controlled system: typically, it may appear that for
certain types of measurements a particular probe must be inserted in a
multitude of places of the middleware implementation. This problem is
a special case of crosscutting of concerns [KLM+97].

Reflection is a technique in which a system is explicitly represented in
terms of a meta-object, allowing one to manipulate the (structure of the)
system by manipulating its meta-object. A reflection-based approach suits
well to the collection of observation values, as shown in Figure 6-6.

Middleware

Applications

Middleware
Meta-level

Application
Meta-level

Controller

Figure 6-6 presents explicit meta-objects of the middleware. Such an
approach allows one to observe and manipulate the middleware platform,
even in a non-intrusive way. The manipulation could be based on
observation of the middleware itself and its inputs and outputs, as well as
the QoS specifications that are provided by the applications. Although
observations of the applications are represented in Figure 6-6, they are
further ignored in this thesis.

Figure 6-6 A
reflective approach
to the QoS-control
design

174 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

Reflective languages or reflective language features, such as, e.g., Java
introspection, can implement reflection in various ways. A language that
supports the full power of reflection has the benefit that observation and
manipulation probes can be installed without affecting the base level code.
However, it may also incur significant performance overhead, in some cases
even when no reflective features are active.

To manage the cost of performance overhead, we assume that tailored
implementations of the observation and manipulation probes are necessary.
Individual probe implementations can make a trade-off between modularity
and flexibility on one hand, and performance overhead on the other hand.
Examples of different probe implementations are reading variables,
function calls inserted in the code, callback methods, the Observer pattern
[Ga+95], and many more.

Crosscutting of concerns requires either careful documentation and
management of probe insertion points, or entirely new tools and techniques
for specifying and implementing crosscut concerns. Recent work in the area
of Aspect-Oriented Programming [KLM+97] addresses these issues.

Interpretation of observations
The interpretation process depends on many factors: the involved
observation data, the required measurements, and the rules or strategies for
interpretation. The number of interpretation rules and their complexity
also determine the interpretation process.

The interpretation part should not become a possibly large collection of
unstructured ad-hoc code. This implies that a generic model should be
developed to define how observations are translated to measurements, such
that interpretation code can be generated as automatically as possible. In
case statistical information determines measurements, a lot of input data
may be required, such that the amount of storage and processing should be
reduced as much as possible.

The interpretation process is essentially a transformation from a set of
input values to a set of output values. The variation in input values lies both
in sources, types and time, and depends on the sources of the input, i.e.,
how the middleware has been designed. The resulting output should be
independent of the specific implementation details of certain middleware
and applications, and it should be suitable for the comparison process. A
suitable run-time representation of our QoS meta-model described in
Chapter 5 should be available to represent the types and values of both
measurements and references.

 The interpretation of observations can be done through calculations,
heuristics (logic rules), stream interpreters or conversions. We need to
model these different techniques in a uniform way, with explicit
dependency relations to a structured representation of the observations and

 OVERVIEW OF QPS 175

measurements. Interpretation rules should all be a specialisation of a single
abstraction, i.e., the interpreter. Each individual instantiation can be
considered as a micro-interpreter. For each QoS measure, there should be a
clear specification of the interpretation rules in terms of formulas or
guidelines.

Many algorithmic and data structure optimisations are possible. The
most effective optimisations depend on the required output (i.e., the
required measurements). For example, for collecting the average of a large
set of values, it is not necessary to store all these values, but we can just
remember the sum of all the values and number of values. In some cases
overhead can be reduced by, e.g., adopting sparse data structures.

Figure 6-7 shows the extensions to our design to meet the needs of
interpretation.

instantiation of

Interpreter

QoS meta
model

Measurements

Micro-
Interpreter

Micro-
Interpreter

Micro-
Interpreter

Observations

Determination and representation of the difference
The comparator compares the measurement with the reference model and
determines the difference. This comparison can vary from subtraction in
the simple case of one QoS characteristic with a numeric value, to complex
calculations possibly using heuristics in the case of multi-faceted QoS
characteristics. The main task of the comparator is to deliver an abstraction
of the ‘problem to be solved’ that is as independent from the
implementation details of the environment as feasible.

The difference produced by the comparator serves to detect (potential)
violations of the QoS. Such violations depend on the agreed QoS. Hence,
the difference must be obtained by comparing the actual measurements
with corresponding references specified by the agreed QoS.

The difference could be represented as a ‘distance’ vector, where each
element of the vector corresponds to a relevant QoS dimension.

Figure 6-7 Details
of the design
related to the
interpretation of
observations

176 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

Measurements and references should be described in such a way that
they can be compared. For this purpose we apply the QoS meta-model
discussed in Chapter 5 to specify both the measurement and the reference,
and the difference. Another benefit of having a QoS meta-model is the
ability to build QoS specification repositories.

Figure 6-8 illustrates the use of the QoS meta-model.

Comparator

QoS meta model

agreed
QoS

required QoS
(client object)
offered QoS
(server object)

middleware QoS
support

Interpreter

measurements

difference

references

instantiation of

QoS refer-
ence base

The agreed QoS is determined before entering the operate phase, through
negotiation based on QoS requirements, QoS offers and the capabilities of
the middleware platform. We assume that the agreed QoS is not modified
during the operate phase.

Controlling algorithm
The difference or distance vector computed by the comparator may define
a situation that requires controlling (i.e., correcting) actions to be taken.
The controlling algorithm is responsible for selecting an appropriate
strategy. The strategy to be chosen depends partially on the specific state
and configuration of the middleware. Rather than mixing middleware state
and configuration information with the measurements and difference, this
information must be available independently. For this reason, we introduce
a middleware control model. This model is an abstraction (model at a meta-
level) of the middleware, which specifies what can be parameterised or
tuned in the middleware, or which components can be plugged in,
deactivated and activated.

Figure 6-8 Details
of the design
related to the
difference of
measurements and
references

 OVERVIEW OF QPS 177

The goal of the controlling algorithm is two-fold: firstly to ensure that
the agreed QoS can indeed be supported by the middleware platform, and
secondly to optimise the overall QoS characteristics, by balancing the
different, often contradictory, requirements. In its most general form,
controlling is an artificial intelligence task that involves domain knowledge
and heuristics about managing and controlling QoS, and the
interdependencies between QoS characteristics.

We have not selected a particular solution for the controlling algorithm,
but give here some options, some of which may be used in combination:
– The controlling algorithm may be implemented as a set of heuristics,

e.g., as a small rule-based expert system;
– Fuzzy logic may be suitable for expressing and reasoning about weak but

conflicting optimisation goals for the various QoS characteristics
[MaAs75];

– Based on behaviour and control theory, a combination of mathematical
computations and algorithms may be used to select the most
appropriate control strategy;

– For each element of the middleware control model we may provide a
set of alternatives or ranges of parameter settings, and annotate these
with statements that define how the various QoS characteristics
influence each other. The permutations of the possible alternatives form
a design space from which one can select an optimal configuration. The
resulting alternatives and settings can determine the resulting control
strategy.

Figure 6-9 shows the extension of our design with an explicit middleware
control model.

Comparator

Middleware
control model

Controlling
algorithm

Control strategy

difference

Translator Interpreter

measurements

Figure 6-9 Details
of the design
related to the
controlling
algorithm

178 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

Control strategy and middleware manipulation
A control strategy is the output of the controlling algorithm, and it should
be an implementation-independent representation of the solution strategy
for maintaining a QoS agreement. Control strategies are strongly related to
the controlling algorithm.

Control actions are abstractions that represent concrete functional
behaviour, but are independent of the implementation details of the
specific middleware software. Control strategies represent sets of control
actions that are to be applied to the middleware in a co-ordinated way. The
representation of control strategies must consist of at least the following
parts: a) set of control actions; b) a set of actuators in the middleware
where the control actions can be applied, and c) a co-ordination
specification, which could be a script or any other form of executable
specification.

There are a few ways to affect the behaviour of a running system like a
middleware platform: a) by invoking operations of a local API; b) by
modifying the internal state of the system, c) by replacing components of
the system with different implementations, and d) by meta-level
manipulation of the system itself. A control action is a specialisation or
instantiation of one of these.

We consider the use of APIs as an important and feasible approach, but
it relies on fixed, static assumptions about the ways of manipulating the
middleware, which cannot be always guaranteed. Directly manipulation of
the internal state is undesirable from an object-oriented software
engineering point-of-view, and should be achieved indirectly by one of the
other approaches. Replacement of components is an interesting alternative,
as it allows for the dynamic replacement of behaviour. The use of meta-
level facilities can be beneficial, but its suitability depends strongly on the
abstraction level used to develop these facilities. Furthermore, meta-models
should be structured in terms of well-defined meta-spaces, avoiding in this
way the proliferation of ad hoc meta-models (see [BlSt97]).

The implementation of control actions through actuators introduces
technical issues comparable to the ones discussed before, and therefore
they are not discussed further.

Feasibility of the overall control loop
The performance overhead introduced by our architectural framework has
to be carefully considered when using the framework in practical settings.
The technical solutions should not make the overall QoS worse than what it
would be without them. Several QoS requirements are related to
performance (e.g., delays and throughput). Implementations of our design
may require a lot of additional activities and overhead, which may conflict
with the QoS agreements they try to maintain. By adopting a tailorable

 ENGINEERING VIEW OF QPS 179

framework approach, we may choose to build instances of the framework
with components ranging from simple, low-overhead components up to
complex components, which can help coping with the performance
overhead introduced by the control loop.

Feed-back control loops may make the controlled system oscillate
between two undesirable states, depending on the corrective measures and
their effects. In some cases, mathematical models based on control theory
can help predicting whether the system is stable during operation, allowing
one to avoid oscillation. In case mathematical models are not available or
are not precise enough, some heuristics may show whether the system is
stable or not. Alternatively, additional (meta-level) controllers could be
introduced to detect instability and take measures to avoid it, e.g., by
actuating on the controlling algorithm. The use of fuzzy logic in the
controlling algorithms may also help avoiding that the control loop
oscillates during operation.

6.2 Engineering view of QPS

This section discusses the engineering objects of QPS. The discussion starts
with an overview of the path that an object invocation takes and reviews the
layers that an invocation traverses. From this discussion follow the layers
that are controlled by QPS. The remainder of the discussion concentrates
on the client-side objects and the server-side engineering objects that
collaborate to provide the services of QPS.

6.2.1 End to end view

The QoS of a binding between a client and a server object is determined by
the quality agreements that are achieved at the various layers of the object
communication middleware.

An object invocation is initiated on the client side and traverses from the
client object through the object interaction layer, the message distribution
layer and then through the network adaptation layer down to the network.
The object interaction layer converts an object invocation into a request
message, which is then conveyed by the message distribution layer. The
message distribution uses the network adaptation layer for the actual
transportation of a message. The network adaptation layer ensures that a
message is transported using a connection oriented reliable data flow.

On the server side the data received from the network traverses up these
layers in a reverse order. This results in a received message at the message
distribution layer and an invocation from the object interaction layer to the
server BEO.

180 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

After processing the invocation the server BEO returns a result, which
again traverses down the layers to the network on the server side and up the
layers on the client side. Traversing the layers of the object communication
middleware up and down at the client and server side is needed for one
object invocation. Each layer affects the achieved QoS of that object
invocation.

Following the integration principle, as discussed in Chapter 5, QPS
must establish and control QoS agreements at each layer in order to ensure
an end-to-end QoS agreement between a client and server BEO.

An agreed QoS (Qagreed) between a computational client and server object
corresponds to an agreed QoS at the object interaction layer. QPS must
map this Qagreed to a QoS agreement at the message distribution layers, which
again must be mapped to a Qagreed at the network adaptation layer.

Figure 6-10 shows the flow of interaction data, the interactions between
the layers of the object communication middleware and related QoS
agreements at the various layers.

Network Adaptation Layer

Read Write

Message Distribution Layer

Client
BEO

Invoke

recvMsg sendMsg

Object Interaction Layer

Server
BEO

Invoke

Read
Write

recvMsg sendMsg

Inter layer interaction

Flow of interaction data

Qagreed, Object
Interaction

Qagreed, Message
Distribution

Qagreed, Network

The dimensions and units used in the QoS agreements shown in Figure
6-10 often differ from layer to layer. For example, consider a performance
QoS type that defines the rate in number of invocations per second to which
the Qagreed at the object interaction layer is associated, so the object
interaction layer must support a minimum number (say X) of invocations

Figure 6-10 Flow of
interaction data and
associated QoS
agreements

 ENGINEERING VIEW OF QPS 181

per second. Assume further that one invocation results in sending two and
receiving one message by the message distribution layer. As a result, QPS
must establish a Qagreed with the message distribution layer that supports at
least 2X messages per second for sending a message and at least X messages per
second for receiving a message. Depending on the size of the messages sent
and received, the message distribution layer must establish a Qagreed with the
network adaptation layer in terms of bytes per second that must at least be
transmitted or received.

In case the message distribution layer does not support the QoS
agreements, QPS may bypass this layer and directly map a Qagreed at the
object interaction layer to a Qagreed at the network adaptation layer.

The entities to which a QoS contract can be associated depend on the
layer where the QoS contract applies. At the object interaction layer a QoS
contract is associated with either an interface or with the individual
methods that this interface defines. At the message distribution layer a QoS
contract is associated with a sequence of messages. At the network
adaptation layer, a QoS contract is associated with a data flow or the
sequence of bytes that constitute that data flow.

6.2.2 Client side objects

QPS objects on the client side are: the client QoS repository, the client
negotiator, a binding factory and binding control objects

The client QoS repository is used to store the required QoS of a client
BEO and is invoked during the inform phase

The client negotiator takes the required QoS and invokes its peer
negotiator on the server side. The detailed operation of the negotiation is
explained when the server negotiator is discussed in section 6.2.3. For now
it is sufficient to know that the client negotiator is invoked during the
negotiate phase and if phase is successfully completed it results in a QoS
agreement at the object interaction layer. This QoS agreement is mapped to
QoS agreements at the message distribution and network adaptation layers.
This results in a QoS agreement for an end-to-end QoS.

Once the QoS agreements for an end-to-end QoS have been created, a
binding manager establishes the QoS agreements, thus completing the
establish phase (phase 3) and then creates a binding control object.

The binding control object is concerned with the operate phase of the
QoS binding lifecycle. This object takes part in the QoS control loop as
discussed in section 6.1.4. It compares QoS measurements with the QoS
agreements and applies a control strategy to maintain the QoS agreements.
In fact, it provides the functions for the interpreter, comparator, decider
and translator building blocks depicted in Figure 6-5.

182 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

Figure 6-11 shows the client side of the QPS. The numbers in the figure
relate to the QoS binding life cycle discussed in section 6.1.2.

Network Adaptation Layer

Message Distribution Layer

Invoke

Object Interaction Layer

Qagreed, Object
Interaction

Qagreed, Message
Distribution

Qagreed, Network

QoS
Repository

Specific
Negotiator

Client
BEO

Binding
Mgr

creates

1 2 3
4

Binding
Control

Specific
Negotiator

Generic
Negotiator

Specific
Negotiator

The figure does not show the probes, sensors and actuators as found in our
QoS control design discussed in section 6.1.4. These objects are specific to
the QoS dimension, which is to be measured and controlled, and if needed
are found in all layers. The sensor and actuator objects interact with the
binding control object, to maintain the agreed QoS.

6.2.3 Server side objects

On the server side a local QoS repository is used to store the offered QoS
of the server BEO. This repository interacts with the QoS object manager
to determine if the QoS that the server intends to offer can be supported.
The QoS object manager is a special case of an object manager as found in
the object middleware reference model. It acts also as access controller to
determine if an offered QoS can be admitted if it is feasible.

Each layer has a specific negotiator. These negotiators interact with the
generic negotiator positioned at the client side during the negotiate phase.

Figure 6-12 shows the server side of the QPS. The numbers in the
figure relate to the QoS binding lifecycle discussed in section 6.1.2.

Figure 6-11 Client
side QPS objects

 TRANSFORMATION OF QPS TO CORBA 183

Network Adaptation Layer

Message Distribution Layer

Invoke

Object Interaction Layer

Qagreed, Object
Interaction

QoS
Repository

QoS
Object

Mgr

1

2

Qagreed, Message
Distribution

Qagreed, Network

Server
BEO

Specific
Negotiator

Specific
Negotiator

Specific
Negotiator

2

2

Admission
Control

The figure does not show the probes, sensors and actuators found in our
QoS control design as discussed in section 6.1.4. These objects are specific
to the QoS dimension, which is to be measured and controlled, and if
needed are found in all layers. The sensor and actuator objects interact with
the binding control object that resides on the client side, to maintain the
agreed QoS.

6.3 Transformation of QPS to CORBA

This section discusses the implementation of the QPS design in a CORBA
2.3 context. The discussion concentrates on the client-side objects, server-
side objects and the CORBA specific interfaces that have been used to
implement the services of QPS.

The QPS implementation is available as an open source project from
http://quamj.sourceforge.net/.

6.3.1 Client side objects

On the client side, QPS has a QoSRepository (QR), a Client Interceptor
and a transport plugin, called QIOP. Figure 6-13 depicts these client-side
objects. Below we describe the QoSRepository and the QoS Client
Interceptor. The QIOP protocol plugin is described in Section 6.5.

Figure 6-12 Server
side QPS objects

184 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

ORB
Inter
face

ORB
Inter
face

ClientClient

 Core Core

IDL
Stubs
IDL

Stubs

Ap
pl

ic
at

io
n

ob
je

ct
s

O
R

B

QPSQPS

QIOPQIOP

Interceptor

QR

Request Reply

QoS Repository
The QoS Repository is implemented as a client-side specific CORBA
service. A reference to a QoS Repository object is obtained by client
applications by calling the resolve_initial_references operation on
the ORB, with the identifier parameter set to “QoSRepository”. The
QoS Repository interface is defined as follows:

interface QoSRepository {

 Object set_required_qos(in Object o, in string qos);
 void negotiate_qos(in Object o);
 string get_agreed_qos(in Object o);
 string get_required_qos(in Object o)
 boolean agreed_qos(in Object o);
};

A client registers a required quality level for server object o by calling
set_required_qos(o,Qrequired(o)). QoS specifications are passed as strings
containing an XML specification of the required QoS. Internally, the XML
specification is validated against the meta-model presented in Chapter 5,
based on the MOF XMI mapping rules. The return value of the operation is
an object reference to the same object as the argument, but with different

Figure 6-13 QPS
client side objects

Figure 6-14 The
QoSRepository
Interface

 TRANSFORMATION OF QPS TO CORBA 185

policies set for this object. The registered required QoS levels can be
obtained by the get_required_qos operation.

The client can initiate QoS negotiation for object o explicitly by calling
negotiate_qos(o) on the QoS Repository. As a result, the QoS
Repository sends a request “negotiate_qos” to object o with the
previously registered required QoS as input parameter. This is a Dynamic
Interface Invocation (DII) request that uses the object reference as a target.

Registration of an agreed QoS is an internal operation of the QPS
service. Therefore, no operation is exposed through the QoS Repository
interface. At any time in the lifetime of a binding, the client can register a
new required QoS level and request a negotiation. The agreed_qos
operation returns true, if an agreement is achieved for the last registered
required QoS level. Otherwise, it returns false.

QoS Client Interceptor
QPS registers one QoS Client Interceptor instance during initialization of
the ORB, so that all calls made by clients are intercepted. The interception
points as defined by the Portable Client Interceptor interface [HNNW99]
are send_request, send_poll, receive_reply, receive_exception
and receive_other. Currently, the send_request interception point is
re-implemented in order to initiate QoS negotiation. If a request is
intercepted that has a target object for which a required QoS is registered,
but no QoS level is negotiated, the Client Interceptor instructs the QoS
Repository to perform the negotiation.

6.3.2 Server side objects

On the server side, QPS has a dedicated Portable Object Adapter (QOA), a
ServantLocator, a Negotiator and a QIOP transport plugin. Figure 6-15
depicts the server side objects.

Object
Adapter
Object
Adapter

ORB
Inter
face

ORB
Inter
face

SkeletonsSkeletons

CoreCore

Object (servant)

QIOPQIOP

QPS

Negotiator

Servant
Locator

Figure 6-15 QPS
server side objects

186 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

QoS Object Adaptor
So far, in this chapter we have assumed that server objects can define their
offered QoS. A server object is also what a client application sees and
interacts with. In CORBA however, on the server side, servants implement
the server objects. It is even possible that several servants implement the
same object.

One can argue that the QoS should be associated with a servant rather
than an object, since different implementations of the same object may
offer different QoS levels. In order to keep our implementation simple, in
QPS, we require that only one servant implements a QoS aware CORBA
server object.

Servers that expose objects with QoS support use a special Portable
Object Adapter (POA) called the QoS Object Adapter (QOA). The QOA
registers servants with offered quality levels and takes care of the routing of
requests to these servants. The QOA therefore holds <o, servant,
Qoffered(o)> tuples where o denotes an object.

To ensure the static object/servant association, the QOA is created with
the policies PERSISTENT, USER_ID, USE_SERVANT_MANAGER,
NON_RETAIN and NO_IMPLICIT_ACTIVATION. These are actually
parameters at the creation time of the QOA. The USE_SERVANT_MANAGER
and the NON_RETAIN policies together ensure that the QOA uses the QoS
Servant Locator to locate the servants of the incoming requests. The
NO_IMPLICIT_ACTIVATION policy disables implicit object activation. The
PERSISTENT and USER_ID policies are necessary for the static
object/servant association.

The QOA extends the standard POA operations with two additional
operations shown in Figure 6-16.

interface QOA : PortableServer::POA {
 void register_servant_with_id(
 in PortableServer::Servant servant,
 in PortableServer::ObjectId oid)
 void set_offered_qos_for_id(
 in PortableServer::ObjectId oid,
 in string offered_qos)
};

The register_servant_with_id allows QoS aware objects to register
themselves with an objectId. Servants invoke the set_offered_qos
operation to register their offered qos.

Figure 6-16 The
QOA interface

 DESIGN DECISIONS 187

QoS Servant Locator
In CORBA version 2.3 and later, request dispatching to the servant that
implements a CORBA object can be dynamic and is managed by the servant
manager that each POA possesses. The POA interface offers two kinds of
servant managers: Servant Locators and Servant Activators. The POA passes
the ObjectId of the target object to its servant manager, expecting it to
return a servant that incarnates the object. The QOA uses a customised
Servant Locator called QoS Servant Locator that is derived from the default
Servant Locator interface. This interface defines two operations:
preinvoke and postinvoke. The preinvoke operation is called on the
Servant Locator before the request is dispatched to the object that handles
the request. The servant returned by this operation shall handle the request.
Similarly, after the request is handled and before the reply is returned, the
postinvoke operation is called on the Servant Locator. The QoS Servant
Locator re-implements the preinvoke operation shown in Figure 6-17.

Servant preinvoke(in ObjectId oid, in POA adapter,
 in CORBA::Identifier operation,
 out cookie the_cookie)
 raises (ForwardRequest);

During negotiation, the request negotiate_qos(o)issued by the
QoSRepository at the client side arrives at the server side to the QOA. As
mentioned before, the QOA uses the QoS Servant Locator that implements
the standard Servant Locator interface.

To handle the negotiate_qos request the QOA calls the preinvoke
operation of its QoS Servant Locator object. This returns the QoS
Negotiator servant, if the operation argument is “negotiate_qos”,
otherwise it returns the servant that has been registered with the ObjectId.

6.4 Design decisions

This section motivates some of the design decisions that where made during
the design of QPS for CORBA.

6.4.1 Servers, servants and objects in CORBA

CORBA introduces the notion of a servant. A servant is a particular
implementation of a CORBA object that performs the work on behalf of a
CORBA object. It can be a function written in C or FORTRAN or a C++
or Java object. Using the Portable Object Adapter (POA), it is possible to

Figure 6-17 The
preinvoke operation

188 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

associate servants with a CORBA object within one server dynamically. This
may result in scenarios, in which different servants handle consecutive
requests sent to the same CORBA object, but this is completely transparent
to clients. This technique is used for load balancing, or to keep objects in
persistent storage and load them into memory on demand. However, as
explained before, we have decided to have one servant implementation per
object, in other words, it is required that requests to published object
references are routed to the same servant, in the same server. This is true
for example, in the Internet InterORB Protocol (IIOP) where the server
location is fixed and is part of the object reference. This also implies that
QPS does not support location forwarding.

6.4.2 CORBA implementation of the client/server bindings

CORBA recognises client and server roles, but only in the context of a
request/reply. The client is the entity originating the request and the server
is the entity in which the object resides to which the request is sent.
Clients, however, have no identity in CORBA.

When implementing the binding support, we wanted to have a binding
repository where tuples of the form <client id,server objects> would be
stored. This is not possible at this moment in standard CORBA, since there
is no client identifier.

An alternative way for implementing bindings has been sought, based on
the fact that there is one ORB instance per client. Associated to the ORB
instance, we can store the references to the server objects for each binding.
We call this solution the client-side implementation of bindings. In a recent
real-time CORBA specification [Ch96], there is a facility to register a
client/server-object binding explicitly. Similarly to our approach, this
registration is also done on the client-side.

A binding object represents a binding between a client and a server
object. A binding object associates a client and a (server) object reference.
A binding is created implicitly when a client obtains the object reference. A
binding is removed when the client or the CORBA server terminates. The
binding remains valid for a series of requests of the client to the object.
Similarly, an agreed quality level remains valid for a series of requests,
although a client may renegotiate the agreed quality level at any time during
the existence of a binding. A binding does not imply an uninterrupted
connection between client and server. A new connection can be established
as the result of a renegotiation.

6.4.3 Dynamic Invocation Interface call

During negotiation, the negotiate_qos DII request is sent by the
QoSRepository using object references as targets that do not define the

 DESIGN DECISIONS 189

negotiate_qos operation in their interface. This is not compatible with
the CORBA 2.3 specification, although extension of CORBA::Object in this
way seems to be a silently accepted technique supported by most ORB
implementations. Theoretically, the ORB implementation may perform
run-time type checking on the parameters of the DII request [PI99]. This
may be necessary for correct marshalling of certain types, such as object
references. The problem is that if an ORB would indeed perform type
checking it would reject to process the negotiate_qos request, since the
operation is unknown for the object it is targeted at.

There are at least two different ways to solve this problem:
1. An object for which a certain quality level can be negotiated must

support the negotiate_qos operation, for example, by inheriting from
a special QoS interface that declares this operation. The advantage of
this approach is that is makes QoS support independent of present and
future CORBA specifications. The disadvantage is that adding a QoS
support later to objects requires a change of interfaces.

2. The CORBA::Object interface from which all CORBA objects inherit
should support the negotiate_qos operation. This effectively
positions the negotiation request besides implicit object reference
operations such as non_existent and is_a, and requires extension to
the CORBA::Object interface and explicit support for it in the ORB and
in GIOP. The advantage of this approach is that no interface change is
necessary to build QoS support into existing objects. The disadvantage is
that modification of the CORBA specification and the ORB
implementation are necessary.

In the current QPS implementation, we have assumed that no type
checking by the ORB for simple types such as string is performed, which
is the case for ORBacus [ORBacus]. Hence, we do not add the operation
negotiate_qos to the CORBA::Object interface. Thus the request is sent
as if the object supports it. As a consequence, the operation name we have
inserted into the request is negotiate_qos and not _negotiate_qos as
it would be the case for implicit object reference operations.

This choice allows the separation of QoS support on the client-side
from QoS support on the server side. Whether a CORBA object is
instantiated on a QoS aware ORB should not be reflected in its (functional)
interface.

190 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

6.5 QIOP

QIOP is an inter-ORB protocol that conveys standard inter-ORB messages
via dedicated channels offering guaranteed (system-level) QoS for messages
sent through these channels. QIOP offers an ORB all the facilities needed
to convey General Inter-ORB Protocol (GIOP) messages, in a similar way
as IIOP does. The IIOP protocol specifies how GIOP messages are
transported over TCP/IP connections. However, the IIOP protocol cannot
provide guarantees on throughput and/or delay for message delivery. With
QIOP such guarantees can be provided. Resource Reservation Protocol
(RSVP) control messages are used to query available resources for
reservation.

QIOP builds on the acceptor/connector pattern [Sc97]. It uses the
Open Communication Interface (OCI) [FHKV99] to register and interact
with the ORB. Figure 6-18 shows how a QIOP transport connection is
established. The QosRepository uses the QIOP ConFactory to create a
Connector. The Connector establishes a TCP/IP connection with the server
side and creates QIOP transport objects. These transport objects create two
RSVP sessions, one for network traffic from the client to the server side and
one for network traffic in the opposite direction. This is necessary because
RSVP can only reserve network resources for a unidirectional flow.

Object
Adapter
Object
Adapter

ORB
Inter
face

ORB
Inter
face

SkeletonsSkeletonsIDL
Stubs
IDL

Stubs
QPS QPS

QIOP

Interceptor

QPS

QIOP

ConFactory

Connector
Transport

Acceptor

Transport

QoS
Repository

1. create_
connector(ior, qos)
3. pre_connect() 2. new Connector(..) 4. ::connect(host,port)

5 ::accept()

10. new(..)
11. create_rsvp_session
12. create_rsvp_session

6. TCP/IP connection 7. new(..)
8. create_rsvp_session
9. create_rsvp_session rsvpdrsvpd

PATHRESV

The Transport objects create RSVP reservations for both RSVP sessions
according to Qagreed.

Figure 6-18 QIOP
interactions

 QIOP EXPERIMENT 191

6.6 QIOP experiment

To demonstrate the benefits of QIOP over IIOP, we have conducted some
experiments. The experiment system consists of three PCs running Linux.
One PC serves as a host for client objects, another PC serves as a host for a
server object. The third PC is configured as a router with two Ethernet
interfaces that connect to the client and server hosts. All PCs run the KOM-
RSVP implementation [KSS01] and the client and the server hosts run an
ORB with QPS and QIOP extensions.

In the experiment, two client objects are running on the client host: one
with a QoS requirement Qrequired and one without a QoS requirement. Both
clients connect to a single server object, i.e., they use the same object
reference. As a result, the client without QoS requirements communicates
using IIOP and the other client communicates using QIOP. To show the
behaviour of QIOP in a saturated network a heavy data stream, with
occasional bursts has been injected into the network. Figure 6-19 shows the
variation of the response times of the two clients in time.

R
es

po
ns

e
tim

e
[m

s]

R
es

po
ns

e
tim

e
[m

s]

R
es

po
ns

e
tim

e
[m

s]

0

200

400

600

800

IIOP

0

200

400

600

800
QIOP

time

R
es

po
ns

e
tim

e
[m

s]

R
es

po
ns

e
tim

e
[m

s]

Figure 6-19 shows that the response times for messages carried over QIOP
are not sensitive to heavy traffic bursts on the network (they stay below 100
ms), whereas messages carried over IIOP can are strongly affected by the
occasional bursts. This demonstrates that applications with more stringent

Figure 6-19
Response times in
a saturated network

192 CHAPTER 6 DESIGN OF A QOS PROVISIONING SERVICE

requirements on the response time of remote object invocations can benefit
from QPS with a QIOP plugin.

In the future, more QoS mechanism plugins could be implemented,
similar the QIOP plugin for RSVP, in order to increase the number of QoS
mechanisms we can use in QPS.

6.7 Conclusions

Next generation middleware must meet the challenge of evolutionary
changes and run-time changes in a heterogeneous distributed computing
environment, in order to provide distributed objects support for QoS. This
can be achieved by meeting the following requirements: 1) support of
application-level QoS concepts 2) flexible and extensible software design
and 3) adaptable QoS support.

The QoS Provisioning Service (QPS) enables control plane functions to
be added to off-the-shelf object middleware, for controlling the QoS of
individual client-server bindings. It has been developed according to a five
phase life cycle model to establish and control a QoS agreement between a
client and a server. QPS has been designed to meet the above listed
requirements on QoS aware middleware.

To support the binding life cycle two frameworks have been developed:
a QoS negotiation framework and a QoS-control framework.

The QoS negotiation framework establishes a QoS agreement, based on
the required and offered QoS of the client and server object, respectively.
The negotiation framework is based on the whiteboard negotiation
approach and allows for specific QoS negotiators to be inserted into the
QoS negotiation process.

The QoS control system observes and, if necessary, manipulates the
state of the controlled system, i.e. the middleware platform and DRP, to
maintain a QoS agreement. The design of the QoS controller is an
architectural framework that is based on models from control theory. This
ensures stability with respect to evolving requirements, and applicability to
a wide range of controlling techniques.

The QoS-control design has been discussed in more detail by examining
a number of technical issues that must be addressed when realizing the
proposed design. For each of these issues, we discussed requirements and
corresponding solutions or solution approaches.

The prototype implementation of QPS for CORBA measures the QoS
by using Portable Interceptors during system operation, and controls QoS
through a feedback loop. Control actions are taken by configuring the
system, but only at the transport level, by means of pluggable protocols.
The specific functions and mechanisms for establishment and maintenance

 CONCLUSIONS 193

of a QoS agreement at the transport level are defined in a protocol called
QIOP. QIOP is a CORBA communication module that uses RSVP for
reserving network resources. We demonstrated its performance benefits
compared to communication over IIOP.

We have identified several topics for interesting future work. These
topics address the further development and prototyping of our control
design, as well as exploring controlling strategies and algorithms that could
not be considered so far. In addition, we would like to profit from results
of related work:
– One of the characteristics of our proposal is that the design is largely

independent of a specific middleware platform. The QoS controller
independent from the middleware (and applications) and may interact
with these through a number of probes (a generic term for interfaces that
abstracts from specific implementations). Conceptually, this is a
reflective model; our QoS controller observes and manipulates the
middleware at a meta-level. Other proposals for reflective middleware
have been made, e.g. [BCRP98], and we would like to see how QPS
integrates with reflective middleware.

– A middleware framework for QoS adaptation has been described in
[LiNa99]. Both a task control model and a fuzzy control model have
been used in this framework to formalize and calculate the control
actions necessary to keep the application QoS between bounds. This
framework shares many design concerns with our framework, although
it has been targeted to the control of applications. Fuzzy logic seems also
a promising technique for QPS to determine control actions.

– OMG has developed Real-time CORBA standards in the scope of the
CORBA 3.0 standard [ScKu00]. These facilities allow one to manipulate
some middleware characteristics that influence the QoS, such as, e.g.,
the properties of protocols underlying the ORB and the threading and
priority polices applied to the handling of requests by server objects.
These facilities are defined in terms of interfaces that have to be
implemented in the middleware platform, generalising in this way the
control capabilities of the platform. Further investigation is needed to
realise an ORB implementation independent implementation of QPS.

Chapter 7

7. Conclusions

This chapter presents the main conclusions of this thesis and identifies
directions for further research.

7.1 General conclusions

This thesis focuses on the simplification of the design, development and
deployment of telematics services. We assume that a designer of such a
service benefits from the use of object technology and middleware
technology. It has been shown that object middleware is an important
infrastructure that supports the design, development and deployment of
telematics services. Middleware hides the functions and mechanisms
needed to overcome the problems that are caused by the distribution of
resources.

Our main premise is that QoS support must be an intrinsic part of an object
middleware platform. Such a middleware is called a QoS aware object
middleware, since it facilitates the realisation of the QoS concerns of a
telematics service. A QoS aware object middleware hides the functions and
mechanisms needed to realise QoS requirements.

A QoS aware object middleware is distinguished from a non-QoS aware
object middleware by establishing and maintaining the QoS concerns that
have been defined during the design of a telematics service. Non-QoS aware
object middleware offers a best-effort QoS to telematics services.

In case a telematics service is offered under a service level agreement
with strict QoS constraints, the designer of that service has to design a QoS
critical application. Object middleware that only supports a best-effort QoS
constitutes an obstacle to the realisation of QoS critical applications. Since
middleware hides the functions and mechanisms needed to overcome
problems of distribution, application components are generally shielded
from direct access to communication and computing functions. However,

196 CHAPTER 7 CONCLUSIONS

application components need this access to control these resources to
establish and maintain the QoS concerns of the telematics service.

A QoS aware object middleware also shields application components
from access to the computing and communication resources, but provides
the means for application components to inform the middleware about
QoS requirements. The QoS aware middleware aims to configure the
computing and communication resources in accordance with the QoS
requirements.

We have shown that a QoS aware middleware has to control changes in
the resources that impact the QoS of a telematics service. Therefore, we
propose that QoS aware object middleware is adaptable to the run-time
and evolutionary changes that impact the QoS delivered by an open
distributed system.

The main objectives of this thesis are summarised in the following three
points:
1. Construct a reference model of object middleware and clearly separate

the qualitative aspects of the object middleware infrastructure from the
QoS concerns of a telematics service;

2. Advance object middleware technology through the addition of facilities
that can control the qualitative aspects of the objects deployed on the
middleware;

3. Validate our objective to make middleware QoS aware by developing an
infrastructure service that can leverage existing mechanisms for QoS
establishment and control to the middleware level.

We evaluate the results of this thesis against these objectives in the sequel.

7.2 Modelling QoS aware middleware

The first objective of this thesis has been achieved by the analyses of open
distributed systems, identification of the role of object middleware in these
systems and the development of models for QoS aware middleware.

In Chapter 2, we have illustrated that the resources of an open
distributed system are not manufactured or owned by a single organisation.
As a result, a distributed system often crosses multiple technological and
organisational boundaries. To construct an open distributed system from
parts manufactured by various organisations, rules that guarantee the
interoperability of these parts must be established.

Characteristics of an open distributed system such as remoteness,
concurrency, lack of global state, partial failures, asynchrony, heterogeneity,
autonomy, evolution and mobility complicate the design of such a system. A

 MODELLING QOS AWARE MIDDLEWARE 197

designer of a telematics service faces a complex task when all these
characteristics have to be taken into account. Modelling techniques and
design principles such as abstraction and refinement provide a designer
with the means to manage this complexity.

We have applied the notion of object to model the parts of an open
distributed system. Designers create object models consisting of objects and
their relations to capture the conceptual parts or concrete software parts of
an open distributed system.

The concepts used to develop an object model are captured in a meta-
model. A viewpoint is defined using a selected set of concepts that
constitute a meta-model for that viewpoint. We have defined a view on a
distributed system as an instance of the associated viewpoint meta-model.

To model the aspects of an open distributed system that are of concern of
this thesis we have defined the computational, engineering and deployment
viewpoint. The meta-models that define each of these viewpoints and the
correspondence relation between concepts in these meta-models constitute
a modelling concept space for open distributed systems.

Three designer roles have been identified. The application designer is
responsible for the design of application objects and is concerned with
developing computational designs. The infrastructure designer is responsible
for the design of the supporting infrastructure for distributed applications
and is mainly concerned with the development of engineering designs but
may also employ computational concepts to express the design of the
infrastructure. The deployment designer constructs units of deployment
denoted as components. An application component is constructed from an
assembly of computational classes; an infrastructure component is
constructed from the classes defined by an infrastructure designer. The
deployment designer ensures that application components and
infrastructure components are compatible in the sense that an
infrastructure component can be used as the run-time environment for
application components.

QoS aware middleware for distributed objects enables the establishment
of bindings between two computational objects that are subject to QoS
agreements. A QoS agreement (Qagreed) is the result of a negotiation process
between the offered QoS (Qoffered) of a server object, the required QoS
(Qrequired) of a client object and the resources available to the object
middleware.

In Chapter 3, we have shown that in the area of software engineering
technologies and software design, the Meta-Object Facility (MOF) is an
important standard that suits our need to construct multiple meta-models
that designers use to develop telematics services.

198 CHAPTER 7 CONCLUSIONS

In Chapter 4, the common concerns of contemporary and early middleware
platforms have been identified. The analysis presented there has resulted in
an object middleware reference model. Our reference model consists of
object communication middleware, general purpose services and the
component execution environment.

Our reference model also defines the interoperability and portability
reference points to which manufacturers of object middleware should
adhere in order to produce interoperable and portable products.

In Chapter 5, we have introduced two distribution transparencies: the QoS
enforcement and the QoS control transparency. Functions that provide the
establishment of a QoS agreement support the QoS enforcement
transparency. Functions that provide the establishment and maintenance of
a QoS agreement support the QoS control transparency.

Through these QoS transparencies we have enabled the separation of
the qualitative aspects of the object middleware infrastructure from the
QoS concerns of a telematics service

7.3 Advancing object middleware

Our second objective is to advance object middleware through the addition
of functions and mechanisms that establish and maintain QoS agreements.
This thesis contributes to this objective in several ways.

In Chapter 3, we have presented the area of object middleware
architectures, QoS architectures, network technologies and software
engineering technologies. Organisations that impact these are IETF, W3C,
ISO-ITU, OMG and SUN JCP. We have shown that an infrastructure
designer must consider the ongoing developments in these organisations
and consortia when designing the supporting infrastructure for
computational objects. In fact, we have identified middleware as a point of
convergence where several standards, architectures and technologies must
be aligned in order to introduce QoS awareness into object middleware
platforms. Figure 7-1 shows the forces that affect the introduction of QoS
awareness into object middleware.

 ADVANCING OBJECT MIDDLEWARE 199

Network developments

Software engineering
developments

OS
developments

Telematics services developments

Object
Middleware

O
ff

er
ed

ca

pa
bi

lit
ie

s
Re

qu
ir

ed

su
pp

or
t

We have described the developments in the area of network technologies
that contribute to introduction of QoS support in packet networks. Two
alternative approaches, i.e., IntServ and DiffServ, for controlling the QoS of
a packet network have been identified.

From these observations we have concluded that new protocols and
mechanisms for the control of QoS in packet networks will emerge. Our
goal is to shield an application designer from these developments.
Consequently, we advocate a service driven approach to the design of a QoS
aware middleware. An infrastructure designer should shield the application
designer from the protocols, interfaces and mechanisms used by the
network to control the QoS.

Chapter 3 contributes to our objective to advance object middleware by
identifying the main organisations and standards in the area of object
middleware and network technology. The interdependencies of various
object middleware standards have been identified. In addition, various QoS
architectures have been reviewed. As a result, our proposals to add facilities
for QoS establishment and control are aligned with existing architectures,
products and standards used to realise open distributed systems.

In Chapter 5, we have defined the concepts to model QoS aspects of an
open distributed system.

We provide the application designer with the modelling concepts to
express the QoS aspects of a computational specification. We have
extended the modelling concept space with meta-model concepts that we
use to develop QoS contracts. A client computational object is associated with
a QoS contract that states the clients’ required QoS. A server computational
object is associated with a QoS contract that states the servers’ offered QoS.

We provide the infrastructure designer with the design concepts that
express QoS aspects of a QoS aware object middleware. Therefore, we have
extended the modelling concept space with meta-model concepts that we
use to develop QoS contract types. A QoS contract type defines a class of

Figure 7-1
Middleware as a
point of
convergence of
technological
developments

200 CHAPTER 7 CONCLUSIONS

potential QoS contracts that an application designer may use to design QoS
contracts. A QoS contract type is the means by which an infrastructure
designer communicates the potential QoS capabilities of a QoS aware
middleware.

QoS aware middleware supports one or more QoS contract types. To
support a particular QoS contract type the infrastructure designer needs to
design functions and mechanisms needed to establish and maintain a QoS
agreement. We provide the infrastructure designer with design principles
such as the user-provider principle, the separation principle and the
integration principle.

7.4 Validation

Our third objective is to validate our approach to the construction of QoS
aware object middleware. Chapter 6 mainly contributes to this objective.
This chapter presents the design of a general purpose service that provides
QoS support. This service is called the QoS Provisioning Service (QPS).

The design concepts and principles, as well as the service driven
approach to QoS provisioning have been evaluated by the design and
implementation of a prototype QPS.

We have designed QPS to manage evolutionary changes of the QoS
functions and mechanisms offered by an open distributed by shielding the
use of these functions from the application designer. The infrastructure
designer creates functions and mechanisms at the middleware layer that
control the QoS offered by the network and computing nodes. The QoS
capabilities that a QPS enhanced object middleware supports are
communicated to the application designer as QoS contract types. A QoS
contract type only reveals what and not how QoS capabilities are supported.

A framework for QoS negotiation and QoS control has been discussed.
We have designed QPS to manage the run-time changes through run-time
establishment of QoS agreements and to maintain QoS agreements by
means of a QoS control loop.

QIOP is an example of a protocol that has been implemented according
to frameworks prescribed for the QPS. QIOP shields the developer of a
CORBA application from the means to control the network QoS. It enables
an application developer to define performance QoS contracts that specify
requirements for the number of invocations per second and end-to-end
delay of an invocation.

 DIRECTIONS FOR FURTHER RESEARCH 201

7.5 Directions for further research

To further understand the models and concepts discussed and applied in
this thesis, various topics could be further investigated. This section
discusses some of these topics and identifies how study of these topics can
further contribute to the goals of this thesis.

Additional QoS mechanisms
We have claimed that our current QPS design is adaptable to evolutionary
changes. If new mechanisms for the control of QoS aspects of a packet
network become available, it should be possible and relatively easy to
include these mechanisms into the QPS. This could be studied, for
example, by modification of QIOP and replacing the RSVP network
reservation mechanisms with the mechanisms that Boomerang provides.
Such a replacement should not require changes to application components,
since these application components can still construct performance
contracts according to the performance contract type offered by the QPS.

Successful replacement of RSVP with Boomerang would demonstrate
the evolutionary adaptability of the QPS.

QoS contract types
Our QoS meta-model supports many contract types. Our QIOP
implementation shows how a performance contract type can be
implemented. Further study could concentrate on the development of
other contract types, such as contract types that support availability or
safety.

A study on availability contract types could benefit from ongoing
research in the area of replication, load balancing and load distribution.

A study on safety contract types could benefit from security mechanisms
for packet networks such as IPsec and public key infrastructures. An early
start of this research has already been made [Ko01].

Further research to construct and support additional contract types,
supports our objective to separate the qualitative aspects of the object
middleware infrastructure from the QoS concerns of a telematics service by
means of QoS contract types.

Aspect oriented software engineering technologies
An infrastructure designer could benefit from novel software engineering
technologies. Aspect oriented software engineering techniques provide a
means to compose software by weaving aspects together [KLM+97].
Middleware functions and mechanisms could be defined in an aspect
oriented manner and woven together with QoS functions and mechanisms
to realise a QoS aware object middleware.

202 CHAPTER 7 CONCLUSIONS

If aspect oriented software techniques simplify the task of an
infrastructure designer, these techniques also contribute to our goal to
simplify the design and development of telematics services.

Integration with the UML
The UML is a broadly used modelling language for specifying and
constructing software artefacts. In case the UML is used to develop
computational specifications of telematics services, with the assumption
that there is a supporting infrastructure that provides distribution
transparencies to the computational objects, we advice to integrate our QoS
meta-model with the UML meta-model.

Such integration would enable the specification of QoS contracts using
UML artefacts. Tools could be developed that enable an application
designer to manipulate the specifications of telematics service, including the
QoS aspects of that service, using a UML notation. Such tools further
simplify the design of telematics services and thus contribute to our goals.

Refinement of the deployment viewpoint
We have identified the deployment of application components and
infrastructure components as an important concern for the realisation of a
telematics service. In Chapter 2 we have defined concepts for the
deployment viewpoint, such as component, deployment descriptor, node
and run-time environment. Further refinement of these concepts is needed.
This refinement should be directed by the deployment concepts found in
contemporary object middleware specifications, such as J2EE and the
Microsoft .NET specifications.

Refinement of the deployment meta-model and mapping of the meta-
model concepts to the implementation concept space of object middleware
platforms enables further automation of the deployment of telematics
services. OMG already solicits proposals in this direction [Depl02]

Application to emerging infrastructures
A recent development for sharing computing resources over
communication networks the grid computing [LFG+00, FKN02]. The grid is
an emerging infrastructure for distributed computing, to which the design
of QPS could be applied. As a result, QoS contracts can be negotiated
between various application components and providers of computing
resources can offer differentiated QoS to their users.

Successful application of the QPS design in the context of grid
computing would further support our premise that QoS should be an
intrinsic part of the supporting infrastructure for distributed applications. `

Appendix A

8. MODL specification of the QoS
meta-model

This appendix presents the MODL specification of the QoS meta-model
described in Chapter 5. MODL is the specification language that the dMOF
toolset of DSTC uses to specify a meta-model.

//
// QoSContract.modl
// MODL definitions for a QoSContract model

package qos_contract_repository {

 // ***
 // * Container and contained definitions
 // ***
 //
 abstract class contained{
 attribute string name;
 // make this class aware that it is

 // the end of an association
 reference defined_in to

the_container of contains;
 };

 abstract class container : contained {
 // make this class aware that it is the end

// of an association
 reference contents to

the_contained_element of contains;
 };

 // ***
 // * Contains definition
 // ***
 //
 // The 'contains' association describes the
 // relationship between a container and its
 // contained elements.
 association contains {

204 APPENDIX A

 composite end bag [0..1]
of container the_container;

 end ordered set [1..*] of
contained the_contained_element;

 };

 // ***
 // * QoSContractType definition
 // ***
 //
 class qos_contract_type : container {
 readonly attribute short major_version;
 readonly attribute short minor_version;
 };

 // ***
 // * Dimension definition
 // ***
 //
 enum direction_kind {

dk_increasing, dk_decreasing
};

 class dimension : contained {
 attribute direction_kind direction;
 attribute TypeCode dimension_type;
 attribute string unitDescription;
 attribute boolean allowMultiConstraint;
 };

 // ***
 // * QoSContract definition
 // ***
 //
 class qos_contract : container {
 readonly attribute qos_contract_type

the_contract_type;
 };

 // ***
 // * DimensionMultiConstraint definition
 // ***
 //
 class dimension_multi_constraint : container {
 // no attributes: they are all inherited...
 };

 // ***
 // * DimensionSingleConstraint definition
 // ***
 //
 enum constraining_operator_kind {

co_eq, co_lt, co_gt, co_ge, co_le
};

 class dimension_single_constraint : contained {
 attribute any parameter;

 APPENDIX A 205

 attribute constraining_operator_kind
 operator;

 };

 // **
 // * QoSDimensionStatisticalConstraint definition
 // ***
 //
 enum statistical_operator_kind {

so_percentile, so_frequency, so_mean, so_variance
};

 class dimension_statistical_constraint :

dimension_single_constraint {
 attribute statistical_operator_kind

statistical_operator;
 attribute any statistical_parameter;
 };

};

Samenvatting

Eén van de meest spectaculaire ontwikkelingen op het gebied van
Telecommunicatie is het Internet. Internet heeft grote invloed gehad op de
samenleving. Onze economie en de manier waarop we zaken doen is er
sterk afhankelijk van geworden. Met de opkomst van het Internet hebben
ook telecommunicatiebedrijven enorme veranderingen ondergaan. Het zijn
ondernemingen die hun diensten leveren op een competitieve markt.
Dienstverleners kunnen zich onderscheiden op hun markt door de kwaliteit
waarmee zij hun diensten aanbieden. Deze dienstkwaliteit (eng: Quality of
Service genoemd) is het onderwerp van studie in dit proefschrift. Het
onderzoek heeft geleid tot concepten en technologieën die ontwerpers van
diensten in staat stelt de kwaliteit van een dienst eenvoudiger te realiseren.

In het algemeen koppelt men de kwaliteit van telematicadiensten één op
één met de kwaliteit van de onderliggende communicatienetwerken.
Daarbij denken we aan eigenschappen zoals de bandbreedte, de vertraging
en variatie op die vertraging. Dat is echter niet, waar dit proefschrift zich op
richt. Hier ligt de focus op de generieke software componenten voor de
levering van diensten. Het gaat dus om software-infrastructuren die
generieke functies leveren waar specifieke applicatiecomponenten gebruik
van kunnen maken. De kern van dit proefschrift is de generieke
functionaliteit van het dienstenplatform waar ontwerpers van diensten een
beroep op kunnen doen om gebruikers van deze diensten een gewenst
kwaliteitsniveau te kunnen leveren.

In dit proefschrift beschouwen we de klassen van dienstenplatformen
die zijn gebaseerd op object middleware. Middleware is de laag die zich
bevindt tussen de applicatiecomponenten en de communicatiesystemen
(datacommunicatie en computers). De huidige dienstenplatformen bieden
onvoldoende ondersteuning voor de kwaliteitsaspecten van een telematica
dienst, zoals snelheid, betrouwbaarheid en veiligheid. Het onderzoek richt
zich op uitbreiding van de dienstenplatformen met functies voor

208 SAMENVATTING

kwaliteitsondersteuning. Een ontwerper van telematicadiensten kan hiervan
gebruik maken en hoeft zich niet te verdiepen in de functies en
mechanismen die nodig zijn om de gewenste kwaliteitsprestaties van een
telematicadienst te realiseren.

De vraag welke mechanismen dienstenplatformen moeten bieden kan
niet los worden gezien van de vraag hoe telematicadiensten moeten worden
ontworpen. Platformen stellen ontwerpers van diensten in staat te
abstraheren van allerlei details. Hierbij gaat het met name om het verbergen
van de aspecten die te maken hebben met distributie van applicatie-
componenten (eng: distribution transparency). Uitgangspunt is dat die
functionaliteit waarvan de applicatieontwerper abstraheert (vrijwel)
automatisch kan worden geïmplementeerd door functies die het
dienstenplatform levert. Dit proefschrift presenteert modellen en
prototypes en laat daarmee zien dat dit principe ook toepasbaar is voor het
ontwerpen en realiseren van de kwaliteitsaspecten van telematicadiensten.

Hoofdstuk 2 van dit proefschrift geeft concepten voor het ontwerpen van
open gedistribueerde systemen. Dit zijn systemen die zijn opgebouwd uit
gestandaardiseerde componenten, die in de regel door diverse fabrikanten
worden geproduceerd. In het algemeen maken open gedistribueerde
systemen deel uit van grootschalige infrastructuren, die door diverse
organisaties worden beheerd. Open gedistribueerd systemen overschrijden
daarmee zowel technologische als organisatorische grenzen.

Om dergelijke infrastructuren mogelijk te maken, zijn er afspraken
nodig over de regels volgens welke de componenten met elkaar
samenwerken. Ook andere eigenschappen zoals fysieke afstand tussen
onderdelen, parallellisme, het ontbreken van een globale toestand, gebrek
aan autonomie, invloed van technologische ontwikkelingen en mobiliteit
zorgen ervoor dat het ontwikkelen van een open gedistribueerd systeem een
complexe bezigheid is.

Om de complexiteit bij de ontwikkeling van open gedistribueerde
systemen te beheersen, maken ontwerpers gebruik van modellering-
technieken zoals abstractie en verfijning. In ons onderzoek gebruiken we
object modellen. Een metamodel definieert de concepten die de ontwerper
hanteert voor het ontwikkelen van de object modellen.

Een andere methode om de complexiteit te beheersen is het gebruik van
gezichtspunten (eng: viewpoints). Een gezichtspunt, of perspectief, bestaat
uit een selecte verzameling van modelleringconcepten. Deze concepten
vormen het metamodel dat een gezichtspunt definieert. Een model volgens
een gezichtspunt is een instantie van het daaraan verbonden metamodel.
Een ontwerper hanteert verschillende gezichtspunten om de diverse
aspecten van het ontwerp van een gedistribueerd systeem tot uitdrukking te
brengen. De correspondentierelaties tussen concepten in de metamodellen

 SAMENVATTING 209

definiëren de relaties tussen gezichtspunten. Het onderzoek heeft
geresulteerd in drie gezichtspunten, te weten computational, engineering en
deployment gezichtspunt. De metamodellen voor elk van deze
gezichtspunten en de correspondentie relaties tussen de concepten in deze
modellen vormen zo een conceptruimte voor het modelleren van open
gedistribueerde systemen.

Hoofdstuk 3 gaat in op de ontwikkelingen van referentiemodellen,
standaarden en technologieën voor open gedistribueerde systemen. Deze
studie borgt dat de resultaten van het onderzoek naar platformen met
kwaliteitsondersteuning hierbij aansluiten. Deze studie vormt tevens de
basis voor het referentiemodel voor object middleware dat tijdens het
onderzoek is ontwikkeld. Object middleware met kwaliteitsondersteuning
blijkt een convergentiepunt te zijn van verschillende standaarden,
architecturen en technologieën.

Hoofdstuk 4 presenteert het referentiemodel voor object middleware. Het
referentiemodel modelleert de functionaliteit van de bestaande
dienstenplatformen, waarbij is geabstraheerd van de gebruikt
implementatietechnologieën. Het referentiemodel tilt het onderzoek naar
het gewenste conceptuele niveau en garandeert dat de resultaten voor
diverse technologieën kunnen worden toegepast.

Het referentiemodel is een belangrijk deelresultaat van dit onderzoek.
Het definieert onder meer de referentiepunten voor portabiliteit en
interoperabiliteit waaraan object middleware moet voldoen om als portable
en interoperabel aangemerkt te kunnen worden.

Hoofdstuk 5 beschrijft de concepten die van belang zijn om de
kwaliteitsaspecten van een telematicadienst te modelleren. De ontwerpers
van zowel applicaties als dienstenplatformen gebruiken deze modellen. Ten
behoeve van de applicatieontwerper is de modelleringsconceptruimte
uitgebreid met concepten voor het beschrijven van kwaliteitscontracten. De
applicatieontwerper specificeert de vereiste kwaliteit van een client object
door aan dit object een Qagreed contract te verbinden. De kwaliteit die een
server object levert wordt gespecificeerd door aan dit object een Qoffered
contract te verbinden.

Ten behoeve van de infrastructuur ontwerper is de
modelleringsconceptruimte uitgebreid met concepten voor het beschrijven
van kwaliteitscontract types. Een contract type beschrijft een klasse van
potentiële kwaliteitscontracten die applicatieontwerpers gebruiken voor het
specificeren van kwaliteitscontracten.

210 SAMENVATTING

Een kwaliteitscontract type is het middel waarmee een infrastructuur
ontwerper de applicatie ontwerper duidelijk maakt welke potentiële
kwaliteitseigenschappen de middleware ondersteunt.

Hoofdstuk 6 beschrijft het ontwerp van een systeem dat de
kwaliteitsondersteuning vanuit het dienstenplatform biedt. Dit systeem is
het hoofdresultaat van dit promotieonderzoek en heet de QoS Provisioning
Service (QPS). QPS is een generieke dienst die een onderdeel is van object
gebaseerde dienstenplatformen. Dankzij QPS hoeft de applicatieontwerper
geen kennis te hebben van de functies en mechanismen die de
kwaliteitsprestaties van applicatie objecten verzorgen. De
infrastructuurontwerper zorgt voor de aansturing van de kwaliteitsprestaties
die het netwerk en computer systemen leveren. Door middel van een
contract type wordt aangegeven welke kwaliteits prestaties ondersteund
worden en niet hoe dat gerealiseerd is.

Voor het ontwerp van QPS is gebruik gemaakt van een raamwerk voor
de onderhandeling en aansturing van kwaliteitsprestaties. QPS onderhandelt
over kwaliteitsafspraken en onderhoudt deze afspraken door middel van een
controle lus.

Als voorbeeld hoe QPS de kwaliteitsprestaties van een netwerk kan
aansturen is de QIOP module ontwikkeld. QIOP schermt de
applicatieontwerper af van de manier waarop de kwaliteitsprestaties van het
netwerk worden bestuurd. Met QIOP kan een clientobject afspraken
maken met een serverobject over het aantal aanroepen per seconde en over
de eind-eind vertragingstijd van een aanroep.

De vraag welke mechanismen dienstenplatformen moeten bieden kan niet
los worden gezien van de vraag hoe telematicadiensten moeten worden
ontworpen. Platformen stellen ontwerpers van diensten in staat te
abstraheren van allerlei details. Hierbij gaat het met name om de aspecten
die te maken hebben met distributie van applicatiecomponenten (eng:
distribution transparency). Uitgangspunt is dat die functionaliteit waarvan
de applicatieontwerper abstraheert (vrijwel) automatisch kan worden
geïmplementeerd door functies die het dienstenplatform levert.
Het doel van dit promotieonderzoek is dienstenplatformen te voorzien
functies die aansluiten bij concepten die applicatieontwerpers kunnen
gebruiken voor telematicadiensten. Dit resultaat is bereikt in de vorm van
de volgende drie deelresultaten:
– Er is een referentiemodel voor object middleware ontwikkeld dat een

duidelijk onderscheid maakt tussen de kwaliteitsaspecten van het
dienstenplatformen en die van de telematicadienst.

– Er zijn concepten ontwikkeld voor functies en mechanismen die voor
een brede klasse van dienstenplatformen kunnen worden toegepast. De

 SAMENVATTING 211

ontwikkelde functionaliteit sluit aan bij concepten die
applicatieontwerpers hanteren bij het ontwerp van telematicadiensten;

– Er is een werkend prototype dienstenplatform ontwikkeld dat
kwaliteitsondersteuning biedt. Het platform is gevalideerd in een
proefomgeving waar de kwaliteitsverschillen ten opzichte van een
dienstenplatform zonder kwaliteitsondersteuning zijn aangetoond.

References

 URLs are provided, where available, for easy access to online versions of works
cited. For the full text of some of the cited works, you may need an account for the
ACM Digital Library or the IEEE Computer Society Digital Library.

[AA97] F.A. Aagesen, QoS Frameworks for open distributed processing systems
Telektronik, vol. 1.97, no. magazine on Quality of Service in
Telecommunications, pp. 26-41, 1997.

[AAS02] T.F. Abdelzaher, E.M. Atkins, K.G. Shin, “QoS negotiation in Real-time sytems
and its application to automated Flight Control”, June 2002.

[AbSh95] T.F. Abdelzaher and K.G. Shin, “Optimal combined task and message scheduling
in distributed real-time system”, in IEEE Real-time Systems Symposium, Pisa,
Italy, December 1995.

[ACH98] C. Aurrecoechea, A.T. Campbell and L. Hauw, "A Survey of QoS Architectures,"
ACM/Springer Verlag Multimedia Systems Journal , Special Issue on QoS Architecture, Vol.
6 No. 3, pg. 138-151, May 1998.

[BCRP98] G. Blair, C. Coulson, P. Robin, M. Papathomas, “An architecture for next
generation middleware”, In: N. Davis, K. Raymond, J. Seitz (eds.). Middleware.
IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing, 191-206. Springer-Verlag, London, 1998.

[BeGe97] C. Becker and K. Geihs, "MAQS: management for adaptive QoS-enabled services",
Proceedings of the IEEE Workshop on Middleware for Distributed Real-Time
Systems ands ervices, 1997.

[BHK+96] E.M.M.A van den Broek, W.M. van Hulten, A. Koetluk-Florescu, L.J.M.,
Nieuwenhuis, E.M.Peeters, “Distributed objects in Telecommunications: a
Managers Guide”, deliverable 3 of EURESCOM project P517, 1996.

[BHK00] M. Born, A. van Halteren, O. Kath, "Modeling and Runtime Support for Quality of
Service in Distributed Component Platforms", work-in-progress paper, DSOM
2000, Austin, Texas, USA, December 2000.

[BHP+00] L. Bergmans, A. van Halteren, L. Ferreira Pires, M. van Sinderen and M. Aksit, “A
QoS-Control Architecture for Object Middleware”, IDMS 2000, Enschede, The
Netherlands, October 2000.

214 REFERENCES

[BiNe84] A.D. Birrell and B.J. Nelson, “Implementing Remote Procedure Calls”, ACM
Transactions on Computer Systems 2(1), 39-59, February 1984.

[BJPW99] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making components
contract aware”, IEEE Computer, 13(7), July 1999.

[BlSt97] Blair, G. and Stefani, J.B., “Open Distributed Processing and Multimedia",
Addison-Wesley, 1997.

[Bo98] Jon Bosak, et al., W3C XML Specification DTD,
http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm.

[BoGa88] A. H. Bond and L. Gasser, “An Analysis of Problems and Research in DAI”, pages
3-35. Morgan Kaufmann Publishers Inc., Los Angeles, CA, 1988.

[BoKa02] M. Born, O. Kath, “COrE – Komponentorientierte Entwicklung offener, verteilter
Software systeme im Telecommunicationskontext”, Band I, II and III, Ph.D.
Thesis, Humboldt Universität zu Berlin, 2002.

[Br99] Tim Bray, Dave Hollander, Andrew Layman, “Namespaces in XML”, January
1999, http://www.w3.org/TR/REC-xml-names/

[CCG+93] A. Campbell, G. Coulson, F. García, D. Hutchison and H. Leopold, “Integrated
Quality of Service for Multimedia Communications”, Proc. IEEE INFOCOM’93,
pp. 732-739, San Francisco, USA, April 1993.

[CCM01] OMG, CORBA 3.0 New Components Chapters, OMG document ptc/2001-11-03
[Ch88] D. Cheriton, "The V Distributed System", in Communications of the ACM, vol 31, no.

3, pp. 314-333, Mar 1988.
[Ch96] Chorus Systems, “Requirements for a Real-Time ORB”, ReTINA, Tech. Report

RT/TR-96-8, May 1996.
[CORBA] OMG, Object Management Group, The Common Object Request Broker:

Architecture and Specification, Revision 2.6, December 2001, OMG document
formal/01-12-35

[De+99] A. Detti et al., “Supporting RSVP in a Differentiated Service Domain: an
Architectural Framework and a Scalability Analysis”, ICC'99, Vancouver, Canada.

[Depl02] OMG, Deployment and Configuration of Component based Distributed Applications,
RFP, OMG Document: orbos/2002-01-19.

[DiBa96] P. Dillenbourg, M. Baker, “Negotiation Spaces in Human-Computer Collaborative
Learning”, in the proceedings of COOP'96. (Juan-Les-Pins, France, June).

[DKS90] A. Demers, S. Keshav, S. Shenker, “Analysis and simulation of a fair queueing
algorithm”, Journal of Internetworking: Research and Experience, 1, January 1990, pp. 3–
26.

[DYK01] Linda G. DeMichiel, L. Ümit Yalçinalp, Sanjeev Krishnan, “Enterprise JavaBeans
specification”, Version 2.0, Final Release, August 2001

[EDOC] OMG, “UML Profile for Enterprise Distributed Object Computing Specification”,
final adopted specification, February 2002, OMG document PTC/02-02-05.

[ETS02] OMG, “Extensible Transports for Real-Time CORBA”, revised Submission, OMG
document MARS/2002-06-01, Objective Interface Systems, Inc.

[Fa01] David C. Fallside, “XML Schema”, May 2001, http://www.w3.org/TR/2001/REC-
xml-schema-0-20010502.

 REFERENCES 215

[FaHa01] G. Fábián, A.T. van Halteren, "The QoS Provisioning Service", DMMOS'2001
workshop at ECOOP.

[Fe99] G. Feher et al., “Boomerang---a simple protocol for resource reservation in IP
networks”, in IEEE Workshop on QoS Support for Real-Time Internet
Applications, Vancouver, Canada, June 1999. http://boomerang.ttt.bme.hu/

[FHKV99] N. Fischbeck, E. Holz, O. Kath, V. Vogel, “Flexible support of ORB
interoperability”, 1999.

[FHLS02] G. Fábián, A.T. van Halteren, M. van de Logt, F. Stoinski, "Design of a middleware
for QoS-aware distribution transparent content delivery", in proceedings of
ISCC'02, Taormina/Giardini Naxos, Italy, July 2002.

[FKN02] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration”, Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

[FlJa95] S. Floyd, V. Jacobson, Link-sharing and resource management models for packet
networks, IEEE ACM Trans. Networking 3 (4), August 1995, pp.365–386.

[Fr96] L.J.N. Franken, “Quality of Service Management: a Model-Based Approach”
Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 1996.

[FrKo98] Svend Frolund and Jari Koistinen, “Quality of Service Specification in Distributed
Object Systems Design”, Proceedings of the 4th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS) Santa Fe, New Mexico, April 27-
30, 1998.

[Ga+95] E. Gamma et al., “Design patterns: elements of reusable object-oriented software”,
Reading MA, Addison-Wesley Publishing Company, 1995.

[GuPe99] R. Guerin and V. Peris, “Quality-of-service in packet networks: Basic mechanisms
and directions”, Computer Networks, 31(3), 169-189, February 1999.

[Ha00] A.T. van Halteren, “A reflective QoS provisioning service for object middleware”,
Position paper for the Workshop on Reflective Middleware (RM 2000), co-located
with the IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware'2000), April 2000.

[He92] A. Herbert, “The challenge of ODP”, in Open Distributed Processing, 1992.
[HFG01] A.T. van Halteren, G. Fábián, E. Groeneveld, "Design and evaluation of a QoS

provisioning service", DAIS'2001, Krakow, Poland, September 2001.
[HHW+00] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie,

Mike Champion, Steve Byrne, “Document Object Model (DOM) Level 2 Core
Specification”, November 2000, http://www.w3.org/TR/2000/REC-DOM-Level-
2-Core-20001113.

[HHW97] S. Hall, D. Heimbigner, A van der Hoek, A.L. Wolf, “An architecture for Post-
Development Configuration Management in a Wide-Area Network”, Proc. Of Int.
Conference on Distributed Computing Systems, Baltimore, Maryland, May 1997.

[HKB01] E. Holz, O. Kath and M.Born, "Manufacturing Software Components from OO-
design models" The 5th IEEE International Enterprise Distributed Object
Computing Conference EDOC 2001, September 01, Seattle (WA), USA

216 REFERENCES

[HNNW99] A.T. van Halteren, A. Noutash , L.J.M. Nieuwenhuis, M. Wegdam, “Extending
CORBA with specialized protocols for QoS provisioning”, proceedings of
International Symposium on Distributed Objects and Applications (DOA'99),
September 1999.

[HNSW99] Aart T. van Halteren, Lambert J.M. Nieuwenhuis , Mike R. Schenk and Maarten
Wegdam, “Value Added Web: Integrating WWW with a TINA Service
Management platform”, Proceedings of Telecommunications Information
Networking Architecture Conference 1999 (TINA '99), Apr. 1999.

[HTW98] Aart T. van Halteren, Patricia Tangney and Vincent Walsh, “An Interoperable
Federated Naming Service Supporting a Pan-European Service Platform”, ICAST
98, 1998.

[HWHN00] Cristian Hesselman, Ing Widya, Aart van Halteren, Bart Nieuwenhuis,
“Middleware support for media streaming establishment driven by user-oriented
QoS requirements”, IDMS 2000, Enschede, The Netherlands, October 2000.

[IETF97] IETF, "Hypertext Transfer Protocol – HTTP/1.1", RFC 2068, 1997.
[ISO X.641] ISO/ITU-T Recommendation X.641 Information Technology – Quality of Service

– Framework [ITU-T Recommendation X.641 | ISO/IEC 13236], 1997.
[ISO8402] ISO International Standard 8402, “Quality management and quality assurance –

vocaluray”, 27-01-2000.
 [JacORB] Gerald Brose, “JacORB: Implementation and Design of a Java ORB”, proceedings

of DAIS'97, IFIP WG 6.1 International Working Conference on Distributed
Applications and Interoperable Systems, September 30 - October 2, Cottbus,
Germany, Chapman & Hall 1997, http://www.jacorb.org/.

[JMS02] Sun Microsystems Inc. “Java Message Service”, version 1.1, April 2002.
[JNDI01] Sun Microsystems Inc., “Java Naming and Directory Interface Application

Programming Interface”, version 1.2, July 2001.
[KHSW00] O. Kath, A. v. Halteren, F. Stoinski, M. Wegdam, Mike Fisher, “Integrated

Middleware Platform Management based on Portable Interceptors”, DSOM 2000,
Austin, Texas, USA, December 2000.

[KiGi87] W.J.M. Kickert, J.P. van Gigch, “A metasystem approach to organisational
decision-making”, in: J.P. van Gigch (ed.), Decision making about decision making: meta-
models and metasystems, pp. 37-55, Abacus Press, 1987.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J.
Irwin. “Aspect-Oriented Programming”, in proceedings of ECOOP '97, Springer-
Verlag LNCS 1241, June 1997.

[Ko01] R.P. Koster, “Integrating security in a quality aware multimedia delivery platform”,
MSc. Thesis, University of Twente, Enschede, The Netherlands, November 2001.

[Ko97] Jari Koistinen “Dimensions for Reliability Contracts in Distributed Object
Systems”, Technical Report HPL-97-119, Hewlett-Packard Laboratories, October
1997.

[Ko99] C. Kobryn, “UML 2001: A Standardization Odyssey”, Communications of the
ACM, vol. 42, no. 10, October, 1999.

[KSS01] M. Karsten, J. Schmitt, and R. Steinmetz, “Implementation and Evaluation of the
KOM RSVP Engine”, in proceedings of IEEE InfoCom 2001.

 REFERENCES 217

[La92] A.A. Lazar, “A Real-time Control, Management, and Information Transport
Architecture for Broadband Networks”, Proc. International Zurich Seminar on
Digital Communications, pp. 281-295, 1992.

[Le90] A.C.J. de Leeuw. “Organisaties: management, analyse, ontwerp en verandering -
een systeemvisie”, Assen/Maastricht, Van Gorcum, 1990.

[LFG+00] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke., “CoG Kits: A Bridge
between Commodity Distributed Computing and High-Performance Grids”, In ACM
Java Grande 2000 Conference, pages 97–106, San Francisco, CA, 3-5 June 2000.

[LiNa99] Baochun Li, Klara Nahrstedt. A control-based middleware framework for quality of
service adaptations. IEEE Journal on Selected Areas in Communications. Vol. 17, No. 9,
1632-1650, Sept. 1999.

[MaAs75] E.H. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy
logic controller. Intl. J. of Man-Machine Studies 7, 1-13, 1975.

[Me88] B. Meyer, Object-oriented Software Construction, Prentice Hall, 1988.
[Me91] Mejlbro, L, “QOSMIC-deliverable - General Aspects of Quality of Service and

System Performance in IBC”, 1991 RACE Deliverable RACE D510.
[Me92] B. Meyer, “Applying ‘design by contract’”, IEEE Computer (Special Issue on Inheritance

& Classification), 25(10), pp. 40-52, October 1992.
[MeHa98] J. de Meer and A. Hadif, "The Enterprise of QoS", tutorial at Middleware 98, the

IFIP International Conference on Distributed Systems Platform and Open
Distributed Processing, September 1998.

[Mej92] Mejlbro, L. "QOSMIC-deliverable D1.3C: QoS and Performance Relationships",
1992, RACE. Deliverable QOSMIC R1082.

[Mo65] G.E. Moore, “Cramming More Components Onto Integrated Circuits",
Electronics, Volume 38, Number 8, April 19, 1965.

[Mo97] R. Moats, “URN syntax”, RFC 2141, 1997, ftp://ftp.isi.edu/in-notes/rfc2141.txt
[MOF] Object Management Group: “Meta Object Facility, Version 1.3”, OMG document

ad/99-07-03.
[Mu93] Mullender, S. (Ed.), “Distributed Systems”, Addison-Wesley, 1993
[NaBa01] Nagy, W and Ballinger, K, The WS-Inspection and UDDI relationship, Nov. 2001,

http://www-106.ibm.com/developerworks/library/ws-wsiluddi.html.
[Ni86] Nii, H.P. “Blackboard systems: The blackboard model of problem solving and the

evolution of blackboard architectures”, AI Magazine, 7(2), 38–53, 1986.
[NiHa99] Lambert J.M. Nieuwenhuis, Aart T. van Halteren, “EURESCOM Services

Platform”, in proceedings of Telecommunications Information Networking
Architecture Conference 1999 (TINA '99), Apr. 1999.

[NiWi00] L.J.M. Nieuwenhuis, I. Widya, “Quality of Service and Service Provisioning on a
Competitive Market”, in proceedings of USM2000, Munich, Germany, 2000.

[NWX00] Klara Nahrstedt, Duangdao Wichadakul, and Dongyan Xu. “Distributed QoS
Compilation and Runtime Instantiation”, in Proceedings of IEEE/IFIP International
Workshop on QoS 2000 (IWQoS 2000), June 5-7, Pittsburgh, PA, 2000

[ODP1] ITU/ISO, Open Distributed Processing –Reference Model, “Part 1: Overview”,
International Standard 10746-1, ITU-T Recommendation X.901, 1996.

218 REFERENCES

[ODP2] ITU/ISO, Open Distributed Processing –Reference Model, “Part 2: Foundations”,
International Standard 10746-2, ITU-T Recommendation X.902, 1995.

[ODP3] ITU/ISO, Open Distributed Processing –Reference Model, “Part 3: Architecture”,
International Standard 10746-3, ITU-T Recommendation X.903, 1995.

[OES01] OMG, “CORBA Event Service”, OMG document formal/01-03-01.
[OlHa98] Petra Oldengarm, Aart van Halteren, “A Multiview Visualisation Architecture for

Open Distributed Systems”, Proceedings of Computer Software & Applications
(Compsac'98), 1998

[OLS01] OMG, “Life cycle Service Specification”, September 2002, Version 1.2, OMG
document formal/02-09-01.

[OMG-CWM] OMG, “Common Warehouse Metamodel (CWM) Specification”, Version 1.0,
October 2001, OMG document formal/01-10-01.

[ONaS02] OMG, “Naming Service Specification”, September 2002, Version 1.2, OMG
document formal/02-09-02

[ONoS02] OMG, “Notification Service Specification”, August 2002, Version 1.0.1, OMG
document formal/02-08-04

[ORBacus] ORBacus, http://www.iona.com/products/orbacus_home.htm
[OTrS00] OMG, “Trading Object Service Specification”, Version 1.0, May2000, OMG

document formal/00-06-27
[P806] EURESCOM P806-GI: A Common Framework for QoS/Network Performance in

a Multi-Provider Environment; http://www.eurescom.de/Public/Projects/P800-
series/P806/P806pr.htm.

[Pa92] A.K.J. Parekh, A generalized processor sharing approach to flow control in
integrated services networks, Ph.D. thesis, Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139,
February 1992, No. LIDS-TH-2089.

[Pi94] L. Ferreira Pires, “Architectural notes: a framework for distributed systems
development”, Ph.D. Thesis, University of Twente, Enschede, The Netherlands,
1994.

[PI99] Object Management Group, “Portable Interceptors”, OMG Document orbos/99-
12-02 ed., December 1999.

[PLS+00] P.P. Pal, J.P. Loyall, R.E. Schantz, J.A. Zinky, R. Shapiro, J. Megquier, “Using
QDL to Specify QoS Aware Distributed (QuO) Application Configuration”, in
proceedings of ISORC 2000, The 3rd IEEE International Symposium on Object-
Oriented Real-time distributed Computing, March 15-17, 2000, Newport Beach,
CA.

[PTM92] A. R. Puerta, S. W. Tu, & M. A. Musen, “The New World of Mechanisms”, Fifth
International Symposium on Knowledge Engineering, Seville, Spain, 38-46. 1992.

[Qu98] Quartel, D.A.C., “Action relations - Basic design concepts for behaviour modelling
and refinement”, CTIT Ph.D-thesis series, no. 98-18, University of Twente,
Enschede, The Netherlands, 1998

[RAC+01] M. Rutherford, K. Anderson, A. Carzaniga, D. Heimgibner, A.L. Wolf,
“Reconfiguration in the Enterprise JavaBean Component Model”, Univerisity of
Colorado, Technical Report CU-CS-925-01, December 2001

 REFERENCES 219

[RCV98] S.P. Romano, R. Canonico, and G. Ventre, “Enabling a QoS architecture for the
Internet”, Final Report for the COST237 European Project, March 1998.

[RMI02] Sun Microsystems Inc. “Java Remote Method Invocation Specification, version
1.4”, 2002.

[Ru93] S. Rudkin, “Templates, types and classes in open distributed processing”, BT
Technol. Journal, II(3), pp. 32-40, 1993.

[SAX98] XML-DEV, “The Simple API for XML(SAX)”, version 10. 11 May 1998.
http://www.megginson.com/SAX/

[Sc97] D.C. Schmidt, “Acceptor and Connector: Design Patterns for Initializing
Communication Services”, in Pattern Languages of Program Design (R. Martin, F.
Buschmann, and D. Riehle, eds.), Reading, MA, Addison-Wesley, 1997.

[ScKu00] D.C. Schmidt, F. Kuhns. “An overview of the real-time CORBA specification”, in
IEEE Computer special issue on Object-oriented real-time distributed computing, June 2000.

[ScVi97] D.C. Schmidt and S. Vinoski. “Object interconnections. Object adapters: concepts
and terminology”, SIGS C++ Report, October 1997,
http://www.cs.wustl.edu/~schmidt/PDF/C++-report-col11.pdf

[SeCa00] F. Siqueira and V. Cahill, “Quartz: A QoS architecture for Open Systems”, in
proceedings of International Conference on Distributed Computing Systems, pp.
197-204, 2000.

[SGHP97] D.C. Schmidt, A.S. Gokhale, T.H. Harrison, G. Parulkar, "A High-Performance
End System Architecture for Real-Time CORBA", IEEE Communications Magazine,
Vol. 35, No. 2, Feb. 1997.

[SiCa00] F. Siqueira, V. Cahill, ”Quartz: A QoS Architecture for Open Systems”, 20th
International Conference on Distributed Computing Systems (ICDCS’00), Taipei,
Taiwan, April 2000.

[SOAP01] W3C, SOAP version 1.2 Working Draft, Oct. 2001,
http://www.w3.org/TR/soap12-part1

 [Sz97] C. Szyperski, “Component software – Beyond object-oriented programming”,
ACM Press, New York, 1997.

[Te00] B. Tekinerdogan. “Synthesis-based software architecture design”, Ph.D. thesis.
Univ. of Twente, Enschede, The Netherlands, 2000.

[TuBu01] P. Tuma, T. Buble, “Open CORBA Benchmarking”, Proceedings of SPECTS
2001, USA, 2001.

[UDDI] Universal Description, Discovery and Integration (UDDI) project, UDDI
specifications, http://www.uddi.org/specification.html.

[UML] UML Revision Task Force, OMG Unified Modeling Language Specification, v. 1.3,
document ad/99-06-08. Object Management Group, June 1999.

[UML-F] OMG, “Model interchange using CORBA IDL”, OMG document formal/01-09-76
and OMG document ad/01-02-17.

[VZL+98] R. Vanegas, J. A. Zinky, J. P. Loyal, D. Karr, R. E. Schantz, and D. E. Bakken.
"Quo’s runtime support for quality of service in distributed objects” in proceedings
of Middleware 98, the IFIP International Conference on Distributed Systems
Platform and Open Distributed Processing, September 1998.

[W3C98] W3C. "HTML 4.0 Specification", W3C Recommendation, 24-4-1998.

220 REFERENCES

[WeHa00] M.Wegdam, A.T. van Halteren, “Experiences with CORBA interceptors”, position
paper for the Workshop on Reflective Middleware (RM 2000), co-located with the
IFIP/ACM International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware'2000), April 2000.

[WOS00] Weibin Zhao, David Olshefski and Henning Schulzrinne, “Internet Quality of
Service: an Overview”, 2000.

[WPHN00] Maarten Wegdam, Dirk-Jaap Plas, Aart van Halteren, Bart Nieuwenhuis, “Using
Message Reflection in a Management Architecture for CORBA”, DSOM 2000,
Austin, Texas, USA, December 2000.

[WPHN00] Maarten Wegdam, Dirk-Jaap Plas, Aart van Halteren, Bart Nieuwenhuis, “ORB
Instrumentation for Management of CORBA”, The 2000 International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA
2000), Las Vegas, USA, June 2000.

[WSDL01] W3C, Web Services Description Language (WSDL) 1.1, March 2001,
http://www.w3.org/TR/wsdl.

[XuPa90] J. Xu and D.L. Parnas, “Scheduling process with release time, deadlines,
precedence and exclusion relations”, IEEE Trans. Software Engineering, Vol. SE-16,
no. 3, pp. 360-369, March 1990.

Abbreviations

Short form Expanded form
ANSA Advanced Networked Systems Architecture
BEO Basic Engineering Object
CCM CORBA Component Model
CFS Object Communication Middleware Feature Set
CORBA Common Object Request Broker Architecture
DCE Distributed Computing Environment
DII Dynamic Invocation Interface
DPE Distributed Processing Environment
DRP Distributed Resource Platform
DSI Dynamic Skeleton Interface
EAR EJB Archive
EFS Execution environment Feature Set
EJB Enterprise Java Bean
GIOP General Inter-ORB Protocol
HTTP Hypertext Transport Protocol
ICT Information and Communication Technology
IDL Interface Definition Language
IETF Internet Engineering Task Force
IIOP Internet Inter-ORB Protocol
IN Intelligent Networking
IP Internet Protocol
IPC Interprocess Communication
ISO International Organization for Standardization
J2EE Java 2 Enterprise Edition
JCP Java Community Process
JMS Java Messaging Service
JNDI Java Naming and Directory Interface

222 ABBREVIATIONS

JVM Java Virtual Machine
MOF Meta-Object Facility
NCCE Native Computing and Communication Environment
OCI Open Communication Interface
ODP-RM Open Distributed Processing Reference Model
OMA Object Management Architecture
OMG Object Management Group
OMT Object Modeling Technique
OOSE Object Oriented Software Engineering
OSF Open Software Foundation
OSF Open Software Foundation
POA Portable Object Adapter
QML QoS Modeling Language
QOA Quality Object Adaptor
QoS Quality of Service
QPS QoS Provisioning Service
QRR QoS Runtime Representation
QuO Quality Objects
RFP Request for Proposal
RMI Remote Method Invocation
RPC Remote Procedure Call
RSVP Resource reSerVation Protocol
SFS General Purpose Services Feature Set
SOAP Simple Object Access Protocol
UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language
W3C Worldwide Web Consortium
WSDL Web Services Description Language
XML eXtensible Markup Language

